
1

Fine-tuning Spectrum Based Fault
Localisation with Sequence Mining

Gulsher Laghari, Alessandro Murgia, and Serge Demeyer
ANSYMO — Universiteit Antwerpen België

{gulsher.laghari, alessandro.murgia, serge.demeyer}@uantwerpen.be

Abstract—Spectrum based fault localisation techniques merely
use the coverage of the program elements to localise the fault.
These techniques ignore the dependency relationships between
the elements and, hence, come at the cost of their limited
diagnostic accuracy. In this paper we propose a variant of
spectrum based fault localisation, which leverages sequences of
method calls by means of sequence mining. We demonstrate the
effectiveness of the variant (we refer to it as sequenced spectrum
analysis) by putting it in comparison to the state of the art with
a case study on two open source java projects.

I. INTRODUCTION

Spectrum based fault localisation [1], also known as coverage
based fault localisation, is a lightweight automated technique
to locate the faults. It localises the faults by comparing traces
form failing and passing test cases. The technique moni-
tors each element under test during program execution and
calculates the hit-spectrum (sometimes also called coverage
spectrum) of a program. The hit-spectrum of an element under
test is tuple of four values (ef , ep, nf , np). Where ef and ep
are the numbers of failing and passing test cases that execute
the element under test and nf and np are the numbers of
failing and passing test cases that do not execute the element
under test. Next, the fault locator (such as Ochiai [1]) translates
the hit-spectrum into suspiciousness of the element under test.
This suspiciousness indicates the likelihood of the element
under test to be at fault. The underlying intuition is that an
element under test executed more in failing tests and less in
passing tests gets a higher suspiciousness and appears atop in
the ranking. Sorting the elements under test according to their
suspiciousness in descending order produces the ranking. We
refer to this as raw spectrum analysis.

However, this raw spectrum analysis comes at the cost of
limited diagnostic accuracy. Since the raw spectrum analysis
ignores the dependency relationships between elements under
test, the top ranked element under test may not be the root
cause of failure. In our previous work, we mined with itemset
mining the patterns of method calls as dependency relationship
in call traces (referred to as patterned spectrum analysis). We
demonstrated that patterned spectrum analysis was more effective
than raw spectrum analysis in localising the faults. Moreover,
we also pointed out that the fault localising ability could
be boosted if patterns comprising of the order preserving
sequence of method calls which also allow for repetition
of calls in the sequence are considered instead of patterns
consisting of itemsets. We conjectured this because, with
manual analysis, we noticed a unique call sequence of the

faulty method which was only present in the failing test cases.
The bug fix in Closure project revealed that the developers
removed the code which produced this call sequence [2].

In this paper we are interested to evaluate the fault local-
isation ability of patterns in the call traces by considering
sequence of method calls instead of itemsets. We refer to it
as sequenced spectrum analysis. We put the sequenced spectrum
analysis in comparison with both raw spectrum analysis and
patterned spectrum analysis and note some observations. In our
case study, we initially use two open source java projects.

II. SEQUENCED SPECTRUM ANALYSIS

In our analysis, we choose the method as the element under
test. Here, we briefly describe the steps in our sequenced
spectrum analysis. We run the test cases on a faulty program
and in each test case, (1) collect the traces for each executed
method of the project (Section II-A), (2) mine the sequences
from these traces (Section II-B), (3) calculate the hi-spectrum
for the call sequences (Section II-C), and finally (4) rank the
methods (Section II-D) according to their likelihood of being
at fault.

A. Collecting the Trace

In each test case, during the execution of a method, we
intercept its method calls and record them into the trace. The
intercepted call can be a call to a method in the project itself
or the call to a method in the external library. We assign a
unique integer identifier to each method. As a method can
execute one or more times in a test case, we separate the call
traces in each execution. The complete trace for a method m()
in a test case T is represented as a set Tm = {t1, t2, ..., tn}.
Where ti represents the method calls invoked from method
m() during its ith execution.

B. Obtaining Call Sequences

We adopt MARBLES algorithm to mine the call sequences
from the method call traces. The algorithm mines general,
parallel, and serial sequences from a single trace sliding a
window of fixed size. We only use the serial sequences [3].
We mine sequences for each call trace ti ∈ Tm of method
m() in a test case T .

Given an input ti ∈ Tm, the algorithm produces si a set of
call sequences as the output. The final set of the call sequences
STm for the method m() in test case T is the union of the set
of call sequences si (STm

=
⋃n

i=1 si)

2

Fault ID

W
a

s
te

d
 e

ff
o

rt

3 9

1
1

1
7 8

1
0

1
8 5

2
4

2
0

1
6

2
2 6 4

1
3

2
1 7 1

1
2 2

1
4

1
9

2
6

1
5

2
3

2
5

3 9 1
1

1
7

8 1
0

1
8

5 2
4

2
0

1
6

2
2

6 4 1
3

2
1

7 1 1
2

2 1
4

1
9

2
6

1
5

2
3

2
5

1
5

1
1

0
1

1
5

1
2

0
1

2
5

1
3

0
1

3
5

1
4

0
1

4
5

1
5

0
1

1
5

1
1

0
1

1
5

1
2

0
1

2
5

1
3

0
1

3
5

1
4

0
1

4
5

1
5

0
1

Patterned Spectrum Analysis
Raw Spectrum Analysis
Sequenced Spectrum Analysis

Top(10) Top(5)
−−−−−−−−−−−−−−
 16 14
 14 13
 16 15

(a) JFreeChart

Fault ID

W
a

s
te

d
 e

ff
o

rt

2

1
2

1
4

2
1

2
2

2
4

2
5

2
9

3
1

3
3

3
5

3
7

4
0

4
3

4
6

4
8

4
9

5
1

5
4

5
9

6
0

6
2

1
5

4
4

5
8

6
1 1 4 5

1
1

2
6

3
4

3
9

4
1

4
5

5
3

6
5

1
3

5
5

6
3 3

1
6

1
9

2
0

2
8

3
0

5
2

3
6

6
4

1
7

4
2

4
7

3
2

3
8

1
0 9

1
8 6 7

2
7 8

5
0

2 1
2

1
4

2
1

2
2

2
4

2
5

2
9

3
1

3
3

3
5

3
7

4
0

4
3

4
6

4
8

4
9

5
1

5
4

5
9

6
0

6
2

1
5

4
4

5
8

6
1

1 4 5 1
1

2
6

3
4

3
9

4
1

4
5

5
3

6
5

1
3

5
5

6
3

3 1
6

1
9

2
0

2
8

3
0

5
2

3
6

6
4

1
7

4
2

4
7

3
2

3
8

1
0

9 1
8

6 7 2
7

8 5
0

1
2

6
5

1
7

1
.5

1
2

6
5

1
7

1
.5Patterned Spectrum Analysis

Raw Spectrum Analysis
Sequenced Spectrum Analysis

Top(10) Top(5)
−−−−−−−−−−−−−−
 57 54
 55 53
 56 53

(b) Apache Commons Language

Fig. 1: The comparison plots

C. Calculating the Hit-Spectrum

Unlike raw spectrum analysis, where there is a hit-spectrum
only for element under test, sequenced spectrum analysis calcu-
lates the hit-spectrum (ef , ep, nf , np) for each call sequence
of the method.

The call sequences of a method m() in sequenced spectrum
analysis are obtained by running the set of failing test cases
(denoted as TF) and the set of passing test cases (denoted as
TP). We obtain a set of call sequences Sm (Equation 1) for
each method m(). The call sequences set Sm is the union of
(i) the call sequences of a method resulting from the failing
test cases (STm : T ∈ TF) and (ii) the call sequences resulting
from the passing test cases (STm

: T ∈ TP).

Sm = {s|s ∈ STm
∧ T ∈ TF }∪{s|s ∈ STm

∧ T ∈ TP } (1)

D. Ranking Methods

To produce a ranked list of methods, first we assign a
suspiciousness to each call sequence of a method. The fault
locator function translates the hit-spectrum of the call sequence
into its suspiciousness. Second, we assign a suspiciousness to
the method itself. The steps are similar as in patterned spectrum
analysis [2]

III. RESULTS

As we compare sequenced spectrum analysis against patterned
spectrum analysis and raw spectrum analysis, for each fault, we
calculate the rankings with all three analyses. We use evalua-
tion metric “wasted effort = m+ n

2 ” [2] for the comparison
of the rankings.

In our preliminary study, we use two projects (1) The
Apache Commons Language with 62 faults, and (2) JFreeChart
with 26 faults from Defects4J dataset [4].

For easy comparison, we show the results in a plot. The
results are shown in Figures 1a and 1b. To make a plot, first we
sort the rankings according to the wasted effort in raw spectrum

analysis and plot them. Then for each fault, we also plot the
corresponding wasted effort in patterned spectrum analysis and
sequenced spectrum analysis. The plots also show the number
of faults where wasted effort is in top 10 and top 5 for each
analysis.

We note some observations from the case study. Like pat-
terned spectrum analysis, sequenced spectrum analysis is also better
than raw spectrum analysis. In project JFreeChart, sequenced
spectrum analysis is little better in terms of wasted effort in
top 10 and 5 and provides less wasted effort for 2 faults
compared to patterned spectrum analysis— notable improvement
for fault 26. For 1 fault the wasted effort is more, however the
effect is not worst. However, there is a mixed effect in other
project. There, sequenced spectrum analysis is not better in terms
of wasted effort in top 10 and top 5. It provides less wasted
effort for 7 faults and also more wasted effort for 7 other
faults compared to patterned spectrum analysis. There is notable
improvement for fault 61 and worst effect for fault 15. These
preliminary findings suggest to investigate the effectiveness of
sequence mining in more projects for further evaluation.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal of
Systems and Software, vol. 82, no. 11, pp. 1780–1792, Nov. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2009.06.035

[2] G. Laghari, A. Murgia, and S. Demeyer, “Fine-tuning spectrum based
fault localisation with frequent method item sets,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp.
274–285.

[3] B. Cule, N. Tatti, and B. Goethals, “Marbles: Mining association rules
buried in long event sequences,” Statistical Analysis and Data Mining:
The ASA Data Science Journal, vol. 7, no. 2, pp. 93–110, 2014.

[4] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 437–
440.

http://dx.doi.org/10.1016/j.jss.2009.06.035

	Introduction
	Sequenced Spectrum Analysis
	Collecting the Trace
	Obtaining Call Sequences
	Calculating the Hit-Spectrum
	Ranking Methods

	Results
	References

