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•Replication study

• Fault localisation



Continuous integration
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Fault localisation

Introduction



Introduction
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Heuristics under investigation -1/5
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1. Collecting traces

• Traces for every created object
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2. Collecting Class sequences — AMPLE

Sliding Window
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2. Collecting Class sequences — SPEQTRA

Frequent sequences
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3. Ranking classes

Weight per class sequence

Weight per class

Where n = number of sequences in class C and W(Xi) is weight of sequence 
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AMPLE weighting scheme SPEQTRA weighting scheme

Where:
• n = number of passing tests
• k(X) = number of passing tests that contain sequence X

Where :
• a11(X) = number of failing tests in which sequence is 

found
• a10(X) = number of passing tests in which sequence is 

found
• a01(X) = number of failing tests in which sequence is not 

found



Replication case: NanoXML
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Version* # of classes LOC # of faults # of tests

1 16 4334 7 214

2 19 5806 7 214

3 21 7185 10 216

5 23 7646 8 216

Experimental Setup 

* Version 4 has no documented faults



Worse 
34

Same 
140

Better 
173

Results and Discussion - 1/5

12

1.20 2.07

SPEQTRA vs AMPLE (347 Ranking)

Average search length
SPEQTRA AMPLE
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Results and Discussion - 2/5
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Results and Discussion - 3/5
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Results and Discussion - 4/5
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Results and Discussion - 5/5



Conclusion

SPEQTRA

• Save computation time

• Handle faulty call sequence of any length

• Locate the faults at class level

SPEQTRA performed better than AMPLE

• Search Length 0 (56% / 40%)

• Worst search length (6 / 8)
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Summary
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