
August 30, 2015
Gulsher Laghari, Alessandro Murgia and Serge Demeyer

Localising Faults in Test
Execution Traces

Overview

2

•Replication study

• Fault localisation

Continuous integration

3

4

Fault localisation

Introduction

Introduction

5

Heuristics under investigation -1/5

6

Heuristics under investigation -2/5

1. Collecting traces

• Traces for every created object

7

Heuristics under investigation -3/5

2. Collecting Class sequences — AMPLE

Sliding Window

8

Heuristics under investigation -4/5

2. Collecting Class sequences — SPEQTRA

Frequent sequences

9

3. Ranking classes

Weight per class sequence

Weight per class

Where n = number of sequences in class C and W(Xi) is weight of sequence

10

Heuristics under investigation -5/5

AMPLE weighting scheme SPEQTRA weighting scheme

Where:
• n = number of passing tests
• k(X) = number of passing tests that contain sequence X

Where :
• a11(X) = number of failing tests in which sequence is

found
• a10(X) = number of passing tests in which sequence is

found
• a01(X) = number of failing tests in which sequence is not

found

Replication case: NanoXML

11

Version* # of classes LOC # of faults # of tests

1 16 4334 7 214

2 19 5806 7 214

3 21 7185 10 216

5 23 7646 8 216

Experimental Setup

* Version 4 has no documented faults

Worse
34

Same
140

Better
173

Results and Discussion - 1/5

12

1.20 2.07

SPEQTRA vs AMPLE (347 Ranking)

Average search length
SPEQTRA AMPLE

13

Results and Discussion - 2/5

14

Results and Discussion - 3/5

15

Results and Discussion - 4/5

16

Results and Discussion - 5/5

Conclusion

SPEQTRA

• Save computation time

• Handle faulty call sequence of any length

• Locate the faults at class level

SPEQTRA performed better than AMPLE

• Search Length 0 (56% / 40%)

• Worst search length (6 / 8)

17

Summary

18

