Evaluating the Performance of Android Layout
Frameworks: A Case Study

Wannes Ghielens
University of Antwerp, Belgium

Abstract—The ANDROID LavyouT FRAMEWORK has a number of
performance pitfalls that have been documented over the years
in various sources. To overcome these issues, several alternative
layout frameworks have emerged that claim a performance gain.
Unfortunately, these performance gains are never validated in
practice. In this paper, we compare the performance of the
four most popular alternatives (namely, DaTA BINDING, ANKO,
CoNsSTRAINTLAYOUT, and L1THO) to ANDROID LAyouT FRAMEWORK
by means of three different scenarios. We conclude that the
frameworks vary a lot in their performance. Nevertheless, there
is no single best solution suggesting that hybrid combinations are
worthwhile to investigate.

I. INTRODUCTION

With the rapid increase in the smartphone market, the mobile
apps market is simultaneously increasing at massive scale. As
of March 2017, the leading app stores Google Play and Apple’s
App Store had 2.8 million and 2.2 million apps available for
download respectively [12].

Despite this massive growth, the quality of the apps varies
substantially suffering from various issues [10]. Large scale
studies of both Android and iOS apps report that the majority
of apps suffer from performance issues [14]. Liu et al. found
that 75.7% of performance bugs are GUI lagging, which can
significantly reduce responsiveness of the app [16]. Similarly,
a poor and complex UI layout may severely slow down the
app, rendering the app unresponsive—one of the major issues
for negative user reviews [14]. The main causes for these
performance issues are two-fold: (i) complex layout hierarchies
and (ii) runtime layout inflation.

(i) Complex layout hierarchies are a major bottleneck for
app performance. For instance, a LinearLayout widget can
be used to arrange widgets in a horizontal or a vertical
fashion. These widgets can be combined as simple building
blocks for more complex arrangements. The result is a tree of
widgets each having a horizontal or vertical arrangement. There
are however far more expressive widgets than LinearLayout
that could achieve the same end result with just a single
widget or a significantly lower amount. Unfortunately, these
widgets are more complicated to use and therefore less popular
amongst new developers. In general, reducing layout hierarchy
complexity actually increases the complexity of the layout
definition, and makes it harder to reason about for both new
and trained developers.

(ii) Runtime layout inflation is a consequence of specifying
the GUI layout of an app with an XML structure parsed at
runtime on the device. This parsing step is named layout
inflation and is often time-consuming, in particular because
some XML structures exploit reflection. Indeed, each node

Technical report, 2018, University of Antwerp, Belgium

Gulsher Laghari
University of Antwerp, Belgium
Universirty of Sindh, Pakistan

Serge Demeyer
University of Antwerp, Belgium
Flanders Make, Belgium

inside the XML represents a view object in the layout tree
and every attribute represents a property on the view object.
Inflating these view objects and setting their properties usually
happens through reflection and reducing this step would greatly
improve performance [9], [21], [22].

Consequently, the Android community has forwarded guide-
lines to avoid common layout performance pitfalls [8]. On top
of that, several alternative layout frameworks have emerged that
either abstract away the flattened hierarchy or simply reduce the
performance impact of nesting layouts. All of these alternatives
claim a performance gain, but these performance gains have
never been validated in practice. In this paper, we compare the
performance of four alternatives (namely, Data BINDING, ANKO,
ConsTRAINTLAYOUT, and L1THO) tO ANDROID LAYOUT FRAMEWORK
by means of three scenarios.

The paper is structured as follows. We list and describe the
layout frameworks in Section II followed by the related work
in Section III. Next, we describe the experimental set-up of our
case study in Section IV, which leads to results in Section V.
Finally, we conclude the paper in Section VI

II. LAYOouT FRAMEWORKS

In this section, we list and describe the five layout frame-
works under investigation in this study. Selected as we perceive
these to be the five most popular frameworks.

A. ANDROID LAYOUT FRAMEWORK

Anpro1p Lavour FraMework is the underlying basic frame-
work to develop Android applications. The framework provides
a set of view objects to create the Ul layout. A view object or a
widget is a basic Ul element. The UI layouts can be specified
in both XML or defined in Java code. The layout defined
via XML is inflated to an equivalent Java view hierarchy and
provides a clear separation between layout definition and view
implementation. Android Studio, the default IDE, provides a
layout editor and layout preview allowing the developer to
design layouts from within the IDE and simultaneously render
the layout without having to deploy the application to a device—
what you see is what you get (WYSIWYG). On the other hand,
the layout written in Java code skips the I/O overhead of
reading the XML file, parsing the XML, and the reflection
involved when creating the view objects defined in the XML.
Moreover this also eliminates the need for FindViewByld calls,
which are needed for view object lookups when the layout is
specified in XML.

The layout specified in XML is first inflated and then created.
During layout inflation, a definition of a layout hierarchy

is converted to an in-memory object representation of that
hierarchy. While in layout creation, the previously inflated
layout is finally rendered on the screen. The underlying steps to
ultimately render the UI layout on screen with ANDroID LavouT
FramMework include, layout, measure, and draw. In the laying-
out, positional constraints on all view objects are resolved and
used to compute their position on the screen. Then, in the
measure step, the size constraints are resolved and used to
compute the width and height of view objects. Finally, using
these constraints, the view objects are rendered on the screen
during the draw step. ANDroID LayouT FRAMEWORK carries out
all these steps sequentially in a single thread, often referred to
as the main thread or UI thread.

B. DATA BINDING

DaTa Brnping is a first party layout framework provided by
Google [4]. It builds on top of the good parts of XML layouts
such as the specialised tooling, layout preview and editor inside
the IDE. It also provides a few solutions to its issues.

More specifically, Data Binpine allows to insert Java code
directly inside the XML. This can, for instance, be used to
bind a Java attribute to the text attribute of a TextView object
inside the XML. Then, whenever the Java attribute is updated,
the change automatically propagates to the view object.

To boost performance, Data Binping only solves a single
minor issue—FindViewByld. The Data Binping library auto-
matically converts all view object identifiers to view object
references, which then can be used inside Java code. This
conversion happens at compile time. Moreover, Data BINDING
also allows bindings for custom created view objects besides
basic view objects.

C. ANKO

Anko is a third party library provided by JetBrains!, the
creators of the Android Studio IDE [13]. Anko uses a domain-
specific language (DSL) to create layouts in code written in
Kotlin? and can only be used when creating an application in
Kotlin—JetBrains’ own JVM language that compiles down to
Java bytecode.

Anko’s DSL has many similarities with regular XML layouts.
The layout definitions are concise and use code block nesting
to mimic the hierarchy of the created layout. Anko can be seen
as syntactic sugar over layout creation in Java code.

D. CONSTRAINTLAYOUT

ConsTraiNTLAYOUT is hardly a framework, yet it certainly
is an improvement that enables developers to write extremely
complex layouts using a single parent container. It was designed
to replace nested RelativeLayouts and LinearLayouts [3]

ConsTrRAINTLAYOUT, however, introduces new challenges
related to flattening a layout to a single parent container.
Replicating each and every behaviour that could previously
be achieved by nesting several instances of LinearLayout and
RelativeLayout can be difficult and very time consuming to

Thttps://www.jetbrains.com
Zhttps://kotlinlang.org

Technical report, 2018, University of Antwerp, Belgium

replicate with ConstraintLayout. As it is only a new view object,
it can actually be used in combination with any of the above
frameworks.

E. LITHO

LitHo is a new layout framework, developed by Facebook,
built with intention to completely replace the Axproip Lavout
FraMework—a feat no other framework has attempted be-
fore [18]. While most of the previous solutions only go as
far as modifying the way the view objects are created, LiTHo
goes several steps further and defines its own set of view
objects, which are mostly identical to the Anproip Layvout
FraMEWORK View objects. Moreover, LitHo also takes care of
the measure, laying-out, and draw by itself. Even when the
Lrtao layout specifies hundreds of nested view objects, the
resulting layout of Lituo is drawn via a single Axpbrozp Lavout
FRAMEWORK View object.

LitHo view objects only contain pure functions with
immutable arguments making them thread-safe by default,
which enables several asynchronous operations. While Anpro1p
Lavout Framework does every step of the layout creation
(laying-out, measure, and draw) on the main thread, Lrtao
can offload the laying-out and measure to a separate thread
and free the main thread for handling other events. Thus, it is
the only framework that does not fully rely on the Android
layout renderer. It includes its own engine for the laying-out and
measure steps, which are asynchronously performed in separate
threads. This complete control over the layout creation enables
LzTHo to heavily optimise the way the layout is created. For
example, the RecyclerView recycles list items, LiTho recycles
view objects inside the list item layout on a per view object
level; at even deeper level and for any layout not just the list
items.

Like Anko, LzTHo also has its own DSL to define the layouts.
However, unlike Anko that requires writing in Kotlin, LxTHo uses
plain old Java code. There is, however, once again a learning
curve as the constraints of Lrteo DSL have no resemblance with
any of the existing Android constraints. L1to uses Facebook’s
Yoga library under the hood which is based on the CSS flexbox
definition [20]. The learning curve of LxTro is steep as its DSL
has little resemblance with the ANDrROID LAYOUT FRAMEWORK.

III. RELATED WORK

Plenty of research has been done on different app perfor-
mance issues in Android apps [11], [15], [16], [24]. Most of
the work includes developer surveys that aggregate the most
popular issues, some of them also provide ways to combat
these issues. Even books have been written on the subject [19].
Following is an overview of the most frequently discussed and
related layout performance issues.

Blocking the UI Thread. Surveys by Linares-Vasquez et
al. [15] and Liu and Cheung [16] count Blocking of the UI
Thread as one of the main issues related to GUI lagging. Long
running operations on the main thread cause the Ul to freeze
until the blocking operation completes. Nilsson has shown
that delays shorter than 100 milliseconds feel instantaneous to

the user, anything longer will break the illusion and will be
noticeable to the user [17].

Complex Layout Hierarchies. Nilsson as well as Guy
associate complex layout hierarchies to poor performance [11],
[17]. Moreover, inflating and creating a layout with many
different nodes with many constraints can take a lot of time.
Slowdown during layout inflation and creation is caused by
XML parsing, reflection , object allocation, measure, laying-out,
and draw steps [21].

Double Taxation. Some container widgets in the Android
framework require two layout passes even for their descendants
in certain conditions—double taxation. A container suffering
from double taxation, when nested, further increases the
number of layout passes resulting in an exponential increase
down the tree [1], [5]. Shirazi et al., in an empirical study,
found LinearLayout and RelativeLayout as the most popular
containers. Furthermore, they also found that LinearLayout
appears frequently nested inside published apps while Rel-
ativeLayout is less frequently nested. Both of these suffer
from double taxation. There is always a double layout pass
for RelativeLayout, however, for LinearLayout it is only when
view objects with weight attributes are used in the horizontal
orientation.

List Scrolling. Liu and Cheung also include list scrolling
performance as one of the issues related to GUI lagging [16].
The list may use internally either a ListView or a RecyclerView.
Both view objects are designed to inflate a minimal amount of
layouts to fill the visible section inside the device’s viewport—
an optimisation which is referred to as view recycling. ListView
does not optimise view recycling by default, hence the
ViewHolder design pattern needs to be used to fully reuse
views. However, RecyclerView has solved this by integrating
the ViewHolder design pattern and exposing only its necessary
counterparts [2], [7].

IV. EXPERIMENTAL SET-UP

Our case study explores performance improvements in single
layout rendering. We measure the time needed to inflate a layout
followed by the creation of this layout.

While we previously mentioned some of the most common
layout performance pitfalls, it is important to clarify these do
not apply to the listed experiments as we carefully crafted
each layout making sure each layout was optimised as much
as possible. It is however possible that some alternative
frameworks handle these issues better in cases where it was
impossible to completely work around a pitfall.

A. User Interface Layouts

To measure the actual performance improvements of a
single layout we had to design a set of benchmarks that test
the different performance issues that were mentioned in the
ANDROID LAYOUT FRAMEWORK.

To observe the actual performance improvements of each
framework we designed two realistic Ul layouts of subtly
different complexities yet kept shallow in depth. The first one
is a simple form with 5 input fields, 2 buttons, and some text

Technical report, 2018, University of Antwerp, Belgium

LayoutBenchmark

O 01233
LayoutBenchmark

54.215,21 + 545.215

Benchmark 1
Form layout

599.430,2

COLOR

H= 11 11

NAME

John

LAST NAME

Doe

CLEAR FIELDS OK

Fig. 1: Form layout (left) and Calculator layout (right).

labels. The second UI was inspired by the default calculator
application, which is shipped with Android devices (Figure
1). Note that we write these layouts optimised in a reasonable
manner using each framework to measure their corresponding
timings.

B. Scenarios

Layout inflation. The time taken to inflate a layout from its
definition is measured. The following two application states
were benchmarked for layout inflation.

The cold start state. This is the state when the application is
launched for the first time. This implies that the initialisation
phase of the frameworks counts here. For repeated measure-
ments, we kill the application and start a fresh instance.

The secondary cold start state. This is rather a more
general use case. Here, the application is active and a new
screen is launched causing a completely new layout to be
inflated. This event happens all the time during the use of
an application. Slowdowns during layout inflation are easily
noticeable here. A faster layout inflation will also speed up
switching between screens in the application translating into
improved user experience. The idea here is to capture and
explore the caching capabilities of each framework across
independent layout specifications. To ensure an empty cache,
we first kill the application. Next, once the first layout is
inflated, we free that layout and inflate a completely different
layout. We then only capture the duration of the second layout
inflation.

Layout creation. Here, we measure the time it takes to create
(render on screen) the inflated layouts. The layout creation
consists of three steps: measure, laying-out, and draw.

C. Performance Measurement

Timing the layout inflation phase is trivially simple. As this
operation is single threaded the thread is blocked until the
layout is inflated. Thus, we easily calculate the duration of the
code executed during inflation from start to finish using the
wall clock time.

H/L Data Constraint
H, Binding Layout

Emu Form \\\\

S3 Form hkhh
H H L H

Emu Calc RRNR
H H H H

S3 Cale kﬁkk

TABLE I: Accepted Hypothesis using a maximum P-value of
0.01 and Higher/Lower average (lower is better) than ANDROID
Lavout FramMework for layout inflation: the cold start state
scenario.

Litho Anko

On the other hand, to measure timings for layout creation,
we use Hierarchy Viewer. It provides the times taken by
the measure, laying-out, and draw steps of layout creation
separately. Doing so independent from the layout inflation
time. Hierarchy Viewer is a GUI application available starting
from Android 4.1 with no command line interface [6]. The
application is written in Java and exposes an API to collect
the required information. Leveraging this API, we create our
own command line interface to collect the timings. To create
a robust measurement, we collect the timings of 50 executions
for each event.

D. Devices

As argued by Vergauwen, performance improvements are
more noticeable on slower devices [22], hence we use a
Samsung Galaxy S3 mini running Android 5.1 as an older
device. We use Genymotion, an emulator, also running Android

5.1 with 512 MB of RAM to mimic a high performance device.

V. RESULTS

We present the results in order, first for single layout
followed by list layout. Each presented benchmark result for
each alternative layout framework is verified for statistical
significance compared to ANDROID LayouT FRAMEWORK USing
Welch’s t-test [23]. We will utilise the following Hypotheses
with a maximum P-value of 0.01:

Hp — The two benchmark result populations have equal
means.

H; — One of the benchmark result population means is
greater than or equal to the other.

We will only be able to conclude a performance improvement
if the null hypothesis is rejected while the benchmark result
mean for the alternative framework is better than the mean of
ANDROID LAYOUT FRAMEWORK.

A. Layout Inflation

Here, first we present the performance of frameworks for
layout inflation measured for the different states of each
application.

The cold start state. Figure 2 provides the layout inflation
times for the cold start state scenario for two apps executed

Technical report, 2018, University of Antwerp, Belgium

Emulator: Form Galaxy S3 mini: Form
| | | | | | | | | |

100 - - 100
ODDD.‘ 0

Emulator: Calculator Galaxy S3 mini: Calculator
| | | | | | | | | |

100 + - 100 |-
| ln i [
o= C = o | 0
T T T T T
IFSS T IS

Fig. 2: Performance assessment for layout inflation: the cold
start state scenario. Lower is better.

Emulator: Form Galaxy S3 mini: Form
| | | | | | | | | |

100 |- - 100 -

50 h soﬂ DII
old_omEm L=

Emulator: Calculator Galaxy S3 mini: Calculator

100 + - 100 |-
50 - - 50| —
OJZI_:]-l OD:DII
T T T T T T T T T
QO OQ\/ Q. &
OF W ¢ OF W ¢

Fig. 3: Performance assessment for layout inflation: the
secondary cold start state scenario. Lower is better.

on two devices. All the frameworks are faster with negligible
performance difference for both apps on the emulator. However,
the frameworks are comparatively slower on the slower S3
device for both apps. There, we observe that the ranking of
AnproOID LavouTt FrameEwork (ALF), Data Binoine (DB), Anko,
and ConstrazntLavout (CL) is fairly consistent for both apps,
DaTa Binpine being the slowest. Litho, on the other hand,
seems to behave inconsistently over the different apps. For
the calculator app where other frameworks are faster, LxtHo is
slower which can be explained as the framework’s initialisation

Emulator: Form Galaxy S3 mini: Form

100 |- - 100 |-

50 | | SOQDQ
o[2HE=E] o5

Galaxy S3 mini: Calculator

Emulator: Calculator

100 - - 100 |-

e eee| He QQQ

SIS R S
SESTE IS
[l draw
[layout
[Imeasure

Fig. 4: Performance assessment for layout creation. Lower is
better.

H/L Data
Ho Binding

Emu Form \\\\
Emu Calc kﬁkk
L L L L
H L L L
$3 Cale RRRM

TABLE II: Accepted Hypothesis using a maximum P-value of
0.01 and Higher/Lower (lower is better) average than ANDROID
Lavout Framework for layout inflation: the secondary cold start
state scenario.

Constraint

Litho Layout

Anko

H/L Data
H, Binding

Emu Form \\\\
Emu Calc NNNR
syhom o U b Tl Tl
S3 Calc NNNN

TABLE III: Accepted Hypothesis using a maximum P-value of
0.01 and Higher/Lower average (lower is better) than ANDROID
Lavout Framework for layout creation.

Constraint

Litho Layout

Anko

Technical report, 2018, University of Antwerp, Belgium

overhead.

When we consider the results of the statistical test in
Table I it however becomes clear that the observed performance
improvements are either too insignificant to reject the null
hypothesis or produce an average that is worse than ANpbroID
Lavout Framework. Out of all the results there isn’t a single
result that both rejects the null hypothesis and has a lower
average. There are however a high number of results where the
null hypothesis is rejected with a higher average, indicating
a negative performance impact. Data Binping, Litao and
ConstraINTLAYOUT are all affected by this. We can therefore
conclude that performance improvements for the cold start
State scenario are non-existing for Anko and even adverse for
the other three alternatives.

The secondary cold start state. Figure 3 shows the perfor-
mance of the frameworks exposing the caching capabilities
of each framework across independent layout specifications.
Here, we see that all frameworks reveal some performance
improvement on the slower S3 device. Amongst all, Lrtro takes
close to 0 milliseconds to inflate the layout indicating it has
comparatively the best caching mechanism, while Axko comes
second and the other three have almost the same performance.
The performance improvement of LiTHo is more prominent
on the slower device, where it takes close to 0 milliseconds
when it previously had a constant time for the cold start state
scenario.

When we verify these observations using the statistical test
results presented in Table II we see that indeed Anko and LiTHo
both reject the null hypothesis in all tests while obtaining
an average lower than Anproip Lavout Framework. We can
conclude that for the secondary cold start state scenario both
Anko and Lrituo present real world performance improvements
over ANproID Lavout FramMework. For the other alternative
frameworks there isn’t a single entry where both the null
hypothesis is rejected and a lower average is achieved. For
these two frameworks performance improvements remain non-
existent or even adverse.

B. Layout Creation

Now we present the performance of each framework to
measure the time taken to create the previously inflated layouts.
Note that layout creation consists of three steps: measure,
laying-out, and draw.

The time duration of each step is given in Figure 4 for
each device and app. Here the best performer is Litao
closely followed by ConstrazntLaYOUT (CL). The performance
improvements of ConsTrainTLAYOUT and LiTHo are most no-
ticeable in the Calculator app. As the measure and layout
are performed in separate threads by Litao, these threads
effectively halt the draw operation until they complete and join
the main thread. Thus, the actual measure and layout times
for LiTHo are included in the draw time, resulting in a slightly
longer draw time yet an overall shorter render time.

On the other hand Axproip Lavout FramMework (ALF), DaTa
Binoing (DB), and Anko have the same performance. This
is because they each use the same underlying procedures

of Anproip Lavout Framework for layout creation. Moreover,
each of them constructs an identical layout tree, hence send
an identical collection of view objects to the renderer.

We verify these findings using the statistical test results in
Table III where we see both a rejected null hypothesis and
a lower average for the calculator layout for both Litao and
ConsTrAINTLAYOUT While none of the other frameworks reject
the null hypothesis. Similar results were obtained for the form
layout. For Data Binpine and Anko we obtained high P-values
resulting in accepted null hypotheses indicating insignificant
differences in performance as expected.

VI. CONCLUSION

We compared the performance of four alternative An-
droid layout frameworks (namely, DaTa Binping, ANKoO,
CoNSTRAINTLAYOUT, and L1THO) tO ANDROID LAYOUT FRAMEWORK
by means of three different scenarios. We experimentally
investigated the impact of layout inflation (with starting states
cold vs. warm) and layout creation for single layout, both
critical steps in rendering the GUI of an app. We verified these
findings by applying a statistical t-test.

When measuring the performance during layout inflation, we
observed a negative performance impact for three out of the four
alternative frameworks in the cold start state. In a warm state,
both Lrteo and Anko perform notably better even on slower
devices due to their caching capabilities. For the layout creation
scenario we noticed positive performance improvements for
both LitHo and CoNSTRAINTLAYOUT.

We conclude that the frameworks vary a lot in their
performance over the presented scenarios. Nevertheless, there
is no single best solution suggesting that hybrid combinations
are worthwhile to investigate in the future.

REFERENCES

[1] Britt Barak. 2016. Layout Once, Layout Twice — Sold! (2016). https://
medium.com/@britt.barak/layout-once-layout-twice-sold-aef156ff16a4

[2] Android Developers. 2016. Making ListView Scrolling Smooth.
(2016). https://developer.android.com/training/improving-layouts/smooth-
scrolling.html

[3] Android Developers. 2017a. Build a Responsive UI with Constraint-
Layout. (2017). https://developer.android.com/training/constraint-layout/
index.html

[4] Android Developers. 2017b. Data Binding Library. (2017). https:
//developer.android.com/topic/libraries/data-binding/index.html
[5] Android Developers. 2017c. Performance and View Hierarchies.

(2017). https://developer.android.com/topic/performance/rendering/
optimizing-view-hierarchies.html

[6] Android Developers. 2017d. Profile Your Layout with Hierarchy
Viewer. (2017). https://developer.android.com/studio/profile/hierarchy-
viewer.html

Technical report, 2018, University of Antwerp, Belgium

(7]
(8]
(91

[10]

(11]

[12]

[13]
(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

Android Developers. 2017e. RecyclerView. (2017).
developer.android.com/guide/topics/ui/layout/recyclerview.html
Android Developers. 2018. Improving Layout Performance. (2018).
https://developer.android.com/training/improving-layouts/index.html
Andrew Drobyazko. 2016. Performance comparison - Building An-
droid UI with code (Anko) VS XML Layout. (2016). https:/
nethergrim.github.io/performance/2016/04/16/anko.html

Maria Gémez, Romain Rouvoy, Bram Adams, and Lionel Seinturier. 2016.
Mining Test Repositories for Automatic Detection of UI Performance
Regressions in Android Apps. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR 16). ACM, New York,

NY, USA, 13-24. DOI:http://dx.doi.org/10.1145/2901739.2901747
Romain Guy. 2009. Turbo-charge your UI. Google Inc., Google 1I/0

(2009).

Statista Inc. 2017. Number of apps available in leading app stores as of
March 2017. (2017). https://www.statista.com/statistics/276623/number-
of-apps-available-in-leading-app- stores

Jetbrains. 2017. Anko. (2017). https://github.com/Kotlin/anko

H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. 2015. What Do
Mobile App Users Complain About? [EEE Software 32, 3 (May 2015),
70-77. DOI:http://dx.doi.org/10.1109/MS.2014.50

Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys
Poshyvanyk. 2015. How Developers Detect and Fix Performance Bottle-
necks in Android Apps. In Proceedings of the 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (ICSME
’15). IEEE Computer Society, Washington, DC, USA, 352-361. DOI:
http://dx.doi.org/10.1109/ICSM.2015.7332486

Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing
and Detecting Performance Bugs for Smartphone Applications. In
Proceedings of the 36th International Conference on Software Engi-
neering (ICSE 2014). ACM, New York, NY, USA, 1013-1024. DOI:
http://dx.doi.org/10.1145/2568225.2568229

Elin Nilsson. 2016. A Recipe for Responsiveness : Strategies for
Improving Performance in Android Applications. Master’s thesis.
UmedUniversity, Department of Applied Physics and Electronics.
Lucas Rocha. 2016. Components for Android: A declarative
framework for efficient Uls. (2016). https://code.facebook.com/posts/
531104390396423/components-for-android-a-declarative-framework-
for-efficient-uis/

Doug Sillars. 2015. High Performance Android Apps. O’Reilly Media.
Emil Sjolander. 2016. Yoga: A cross-platform layout engine.
(2016). https://code.facebook.com/posts/1751945575131606/yoga-a-
cross-platform-layout-engine/

Citilin Tudose, Carmen Odubdsteanu, and Serban Radu. 2013. Java
Reflection Performance Analysis Using Different Java Development.
Springer Berlin Heidelberg, Berlin, Heidelberg, 439-452. DOI:http:
//dx.doi.org/10.1007/978-3-642-32548-9_31

Simon Vergauwen. 2016. 400% faster layouts with Anko. (2016).
https://android.jlelse.eu/400-faster-layouts- with-anko-dal7f32c45dd

B. L. WELCH. 1947. THE GENERALIZATION OF ‘STUDENT’S’
PROBLEM WHEN SEVERAL DIFFERENT POPULATION VAR-
LANCES ARE INVOLVED. Biometrika 34, 1-2 (1947), 28-35. DOI:
http://dx.doi.org/10.1093/biomet/34.1-2.28

S. Yang, D. Yan, and A. Rountev. 2013. Testing for poor respon-
siveness in android applications. In 2013 Ist International Workshop
on the Engineering of Mobile-Enabled Systems (MOBS). 1-6. DOI:
http://dx.doi.org/10.1109/MOBS.2013.6614215

https://

