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Abstract—Spectrum based fault localisation techniques merely
use the coverage of the program elements to localise the fault.
These techniques ignore the dependency relationships between
the elements, such as a combination of methods to be called
together, and hence come at the cost of their diagnostic accu-
racy. In this paper we present a variation of spectrum based
fault localisation techniques which leverages the sequences of
method calls as coverage elements than merely individual method
coverage. We compare our technique with traditional spectrum
based fault localisation techniques, which use the coverage of
individual methods, and demonstrate with a small set of faults
that our technique outperforms these techniques.

I. INTRODUCTION

During software maintenance, changes in the code may
introduce regression faults, causing some of the previously
passing test cases to fail [1]. Once such a regression fault
appears, developers need to find the root cause of the fault
in hundreds if not thousands of classes, a daunting task at
best. To help developers locate the faults, there exist two
broad categories of techniques (1) information retrieval based
fault localisation techniques [2]–[5], and (2) spectrum based
fault localisation techniques [6]–[9]. Both of these techniques
produce a ranked list of program elements indicating their
likelihood of containing the fault. While the former uses
bug reports and source code files for analysis, the later uses
program traces generated by executing failing and passing test
cases. Since spectrum based fault localisation only require
traces from test runs readily available after running the regres-
sion test suite— they are ideally suited for locating regression
faults.

Spectrum based fault localisation [6]–[9], also known as
coverage based fault localisation [10], is a lightweight au-
tomated technique to locate the faults. It localises the faults
by comparing traces form failing and passing test cases. It
discovers statistical correlation between test case failures and
the execution of the program elements, also known as units
under test. It collects the coverage information of units under
test in the test cases as a test coverage matrix (TCM). A TCM
is represented as a matrix, where rows correspond to units
under tests and columns represent test cases [8], [9]. Each
element in the matrix marks whether a given unit is covered
(marked as 1) or not (marked as 0). A similarity coefficient [7]
is used to assign a weight to each unit under test, which
indicates the likelihood of the unit under test to be at the

fault. Finally a ranking of the units under test is produced by
sorting them with their weights in descending order. A unit
under test executed more in failing tests and less in passing
test gets a higher weight and appears at top position in the
ranking.

Traditional spectrum based fault localisation (coverage
based fault localisation) techniques merely use the coverage
of units under test individually. These techniques ignore the
dependency relationships between units under test, such as a
combination of methods to be called together. Consequently,
the top ranked unit under test may not be the root cause of fail-
ure. Additionally, the complex program executions cannot be
reflected through coverage of individual units under test, hence
it results into inaccurate outcome of these techniques [11].
For example, when the unit under test is a method, it can
be executed in both passing tests as well as failing test. The
similarity coefficient will rank the method lower. However,
this method might be the potential candidate for the fault, if
during its execution it followed a unique path (sequence of
method calls) which led to the test failure. It turns out that
the mere coverage of a program may not suffice to locate
the fault, but the coverage of individual methods would do.
It is also reported that method call sequences are better fault
predictors than method coverage [12], [13].

In this paper we present a variation of spectrum based
fault localisation which leverages the sequence of method
calls as coverage elements, as opposed to a mere coverage of
individual methods. More specifically, we collect the method
call traces of each method during its execution, reduce these
call traces of a method into call sequences and compare the call
sequences between failing and passing tests using a similarity
coefficient to assign a weight to each sequence. Next, each
method gets a weight which is an average weight of its call
sequences. Finally a ranking of the methods is produced.

We test the efficiency of our technique on two small, yet
representative, JAVA projects (NanoXML and JMeter) with a
limited number of faults, and demonstrate that our technique
performs better than coverage based fault localisation tech-
niques.

The remainder of this paper is organised as follows. Sec-
tion II describes our technique, Section III describes experi-
mental setup. Section IV reports the results along with their
discussion and Section V concludes the paper.



TABLE I
A SAMPLE TRACE IN A TEST CASE

caller object id caller id callee id
o1 m0 m1

o1 m0 m1

o1 m0 m2

o1 m0 m3

o1 m0 m2

o2 m0 m1

o2 m0 m1

o2 m0 m1

o1 m1 m5

II. OUR TECHNIQUE

Spectrum based fault localisation has been applied at differ-
ent levels of granularity, including statements [6], blocks [7],
methods [8], [9], and classes [12], [13]. In our technique, we
choose the granularity level of methods, which is intermediate
between low level statements and high level classes.

Our technique works in a scenario, where we have a failing
test case and one or more passing test cases. We run these
test cases and in each test case, we (1) collect the traces (Cf.
Section II-A), slice the traces into individual method traces
(Cf. Section II-B), reduce the sliced traces into call sequences
for a method (Cf. Section II-C), and finally rank the methods
(Cf. Section II-D) according to their likelihood of being at
fault.

A. Collecting the trace

We collect in the trace for each method call (1) caller object
id, (2) caller id, and (3) callee id. The ‘caller object id’ is
the identifier of the caller object which calls the method, the
‘caller’ is the method from which the call is made and the
‘callee’ is the called method. In case a method is called from
within the static method in the class context, there is no caller
object, hence we mark the ‘object caller id’ as -1.

In each test case, we intercept the method call, collect
the called method identifier, caller object identifier, the caller
method identifier and record it in the trace. The method
identifier is a unique integer associated with method name.
A sample trace in a test case looks like as given in Table I

We only trace the methods belonging to the project and
ignore methods other than project methods (such as JAVA
library methods).

B. Slicing the trace

Once a trace for a test case is obtained, we slice the trace
into individual method traces. Each sliced trace represents the
trace for each executed method in the test case. It represents
the execution profile of a method.

The sliced trace for a method m in a test case tc is as
Tm(tc) = {t1, t2, ..., tn} , where ti represents the method calls
invoked from method m through same caller object. If the
method m is static, it may also be called as class context, in

that case the ‘caller id’ is -1 and the calls appear in a single
trace for ‘caller id’ -1.

Referring to Table I, t1 = {m1,m1,m2,m3,m2} for the
calls of method m0 with object o1 and t2 = {m1,m1,m1}
for the calls of method m0 with object o2. Therefore, the sliced
trace Tm0

(tc) for m0 is as follows.

Tm0
(tc) =

{
{m1,m1,m2,m3,m2},
{m1,m1,m1}

}
(1)

C. Obtaining call sequences

As comparing the large sliced traces Tm(tc) of methods
between failing and passing test cases can be expensive, we
reduce these call traces into a call sequence set for each
method. To arrive at call sequence set Sm(tc) for a method m,
we adopt the closed itemset mining algorithm [14]. Given the
sliced trace Tm(tc) of method m in a test case tc, we define:
• X —itemset— a set of method calls.
• σ(X) —support of X— the number of ti in Tm(tc) that

contain this itemset X.
• minsup —minimum support of X— a threshold used to

tune the number of returned itemsets.
• frequent itemset — an itemset X is frequent when
σ(X) ≥ minsup.

• closed itemset — a frequent itemset X is closed if there
exists no proper superset X ′ whose support is same as
the support of X (i-e. σ(X ′) = σ(X)).

We refer a closed itemset X as a frequent call sequence
or simply a call sequence. We fix minsup to 1 to include
call sequences for the methods called with one object only or
for those called with a class context. Moreover, the mining
algorithm also returns call sequences of length 1 comprising
only one method call. But we exclude these from final set,
a call sequence should comprise at least two methods. The
call sequences set Sm0(tc) for method m0 from sliced trace
Tm0(tc) in Equation 1 is as follows.

Sm0
(tc) = {{m1,m3,m2}} (2)

D. Ranking methods

We rank the methods for their likelihood of being at fault
using call sequences set Sm(tc) of all methods from a test
set. A test set contains one failing test case and one or
more passing test cases. We obtain a call sequences set
Sm (Equation 3) for each method m — which is the union
of call sequences of the method in Sm(tcF ) from failing test
case and call sequences in Sm(tcPi

) from passing test cases.

Sm = {X|X ∈ Sm(tcF )} ∪ {X|X ∈ Sm(tcPi
) and i ≥ 1}

(3)
To rank the methods, (1) we build a test coverage matrix

(TCM) of call sequences for each method and, using a
similarity coefficient [7], assign a weight to each sequence
in the call sequences set Sm (Equation 3) of a method. Then,
(2) we obtain the weight of a method by taking the average
weight of its call sequences.



1) Weight per call sequence: Each call sequence X ∈ Sm

(Equation 3) gets a weight using a similarity coefficient.
In principle, any similarity coefficient can be chosen from
available in the literature, we used in our experiments three
coefficients in order to see which performs better. The three
similarity coefficients we used are the Jaccard (Equation 4),
Tarantula (Equation 5) and Ochiai (Equation 6) as used in [7].

WJ(X) =
a11(X)

a11(X) + a01(X) + a10(X)
(4)

WT (X) =

a11(X)
a11(X)+a01(X)

a11(X)
a11(X)+a01(X) +

a10(X)
a10(X)+a00(X)

(5)

WO(X) =
a11(X)√

(a11(X) + a01(X)) ∗ (a11(X) + a10(X))
(6)

Where:
• a11(X) = Number of failing tests in which sequenceX

is found.
• a10(X) = Number of passing tests in which sequenceX

is found.
• a01(X) = Number of failing tests in which sequenceX

is not found.
• a00(X) = Number of passing tests in which sequenceX

is not found.
2) Weight per method: Each method m gets a weight

W (m) as an average weight of its sequences (Equation 7).
Those methods without call sequences set have weight 0.

W (m) =
1

|Sm|
∑

X∈Sm

W (X) (7)

Finally, a ranking of all executed methods is produced using
their weights W(m). The weight of the method indicates its
likelihood of being faulty. Those methods with the highest
weight appear top in the ranking.

III. EXPERIMENTAL SETUP

For our experiment we use the subject programs, also
known as probands [8], [9], NanoXML and JMeter available
from the Software-artifact Infrastructure Repository1 [15]. The
probands come with fault metrics and test cases. The particular
details of the probands are reported in Table II

To obtain the rankings, we inject one fault at a time and
trace each test case (Cf. Section II-A). Next, we calculate the
ranking of methods for each failing test and related one or
more passing tests. We ensure that we obtain the ranking with
test cases which are related to each other. The test cases are
related to each other if they activate the same feature of the
program or they all belong to same JUnit test class.

For a comparison purpose, we also obtain the ranking with
the traditional coverage based technique. We form a test set in
which there is one failing test and one or more related passing

1http://sir.unl.edu/portal/index.php

TABLE II
THE PROBANDS USED IN OUR EXPERIMENTS

Proband # of versions UUTs* # of faults

NanoXML 4 57 16
JMeter 2 81 3

*The number of average executed methods in the test cases

tests and obtain a ranking with both our technique and the
traditional coverage based technique. With this configuration,
we have a total of 354 rankings for each technique.

We measure the accuracy of our rankings as wasted
effort [8], [9] — the number of methods (units under test) to
inspect in vain before reaching the faulty method.

Limitation: We only trace the method calls that belong to the
project itself, excluding JAVA library calls. Therefore, those
faulty methods in our probands which do not call other project
methods, have no call sequence (Cf. Section II-C). We had
to drop these faults from each proband in our experiments.
Consequently, we only report the exact number of faults in
Table II that we used in our experiments.

IV. RESULTS AND DISCUSSION

As we compare our technique with the coverage based
technique, we obtain two rankings with both techniques for
each combination of a single failing test and multiple passing
tests. Moreover, we obtain rankings with each of the three
similarity coefficients mentioned in Section II-D. In total, we
obtain 354 rankings.

In Table III, we report the average of wasted effort from all
the rankings with our technique and coverage based technique
for each of the similarity coefficient. In Table IV, we report
the maximum wasted effort — maximum number of methods
to search through — in 50% of the total rankings.

Discussion: In Table III, it can be observed that, on average,
we have more than 50% improvement over the traditional
coverage based technique. With our technique, using the
Jaccard similarity coefficient, on average 8.6 methods need
to be inspected in vain before finally reaching at the faulty
method. On the contrary, 22.2 methods need to be inspected
in vain with coverage based technique. Similarly, the 50%
improvement holds using the Tarantula, Ochiai and Jaccard
similarity coefficients.

Moreover, it can be observed from Table IV , as well
as from Figure 1, that for 50% of rankings, a maximum
of 4 methods (using Ochiai) need to be searched with our
technique. Whereas, 16.5 methods need to be searched with
coverage based technique, which is almost 4 times more.

V. CONCLUSION

Spectrum based fault localisation techniques are lightweight
automated fault localisation techniques. These techniques lo-
calise the faults by comparing traces from failing and passing
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Fig. 1. The wasted effort in all the rankings calculated with Ochiai

TABLE III
THE AVERAGE ACCURACY MEASURED AS WASTED EFFORT

Our Sequences Technique Coverage Based Technique

Jaccard Tarantula Ochiai Jaccard Tarantula Ochiai

µ* 8.6 10.8 9.3 22.2 22.2 22.2
σ# 10.8 10.7 11.1 14.9 14.9 14.9
*Arithmetic mean
#Standard deviation

TABLE IV
THE MAXIMUMWASTED EFFORT IN 50% OF RANKINGS

Our Sequences Technique Coverage Based Technique

Jaccard Tarantula Ochiai Jaccard Tarantula Ochiai

4.5 7.0 4.0 16.5 16.5 16.5

test cases, find statistical correlation between test case failures
and the execution of the units under test.

As these techniques merely use the coverage of units under
test, ignoring the dependency relationships between them,
their diagnostic accuracy is limited and the results are often
inaccurate.

In this paper we present an improved spectrum based fault
localisation technique, which takes into account the call se-
quences of a method in a program. We demonstrate on a small
number of faults that our technique outperforms the traditional
coverage based technique. The diagnostic accuracy of our
technique is 50% better than coverage based techniques.
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