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ABSTRACT
With the advent of agile processes and their emphasis on
continuous integration, automated tests became the promi-
nent driver of the development process. When one of the
thousands of tests fails, the corresponding fault should be
localised as quickly as possible as development can only pro-
ceed when the fault is repaired. In this paper we propose a
heuristic named SPEQTRA which mines the execution traces
of a series of passing and failing tests, to localise the class
which contains the fault. SPEQTRA produces ranking of
classes that indicates the likelihood of classes to be at fault.
We compare our spectrum based fault localisation heuristic
with the state of the art (AMPLE) and demonstrate on a
small yet representative case (NanoXML) that the ranking
of classes proposed by SPEQTRA is significantly better than
the one of AMPLE.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, tracing

General Terms
Algorithms

Keywords
Automated developer tests; spectrum based fault localisation;
replication (different heuristic & same data)

1. INTRODUCTION
The quintessential principle of continuous integration de-

clares that software engineers should merge their working
copies with the main branch several times a day [7]. During
each integration step, a continuous integration server builds
the entire project, using a fully automated process involving
compilation, unit tests, integration tests, code analysis, secu-
rity checks, etc. When one of these steps fails, the build is

said to be broken; development can then only proceed when
the fault is repaired [11, 15]. The safety net on automated
tests, encourages software engineers to write lots of tests —
several reports indicate that there is more test code than
application code [16, 5, 19]. Moreover, executing all these
tests sometimes take several hours [14]. Hence, it is criti-
cal to quickly identify the location of the fault in the code.
Not only does a broken build block all progress in the team,
but more importantly the location of the fault serves as an
indicator for the software engineer expected to repair the
build.

In the simplest case, there is a one-to-one mapping between
the failing test and the class containing the fault. However,
for complex object interactions where objects must adhere to
a certain protocol, illegal call sequences trigger faults which
are notoriously hard to pinpoint to an exact location [13].
Faults induced by illegal method call sequences are real
and hard to debug: a conservative estimation identified
115 faults related to missing method calls in the Eclipse
bug repository [12]. For such faults the one-to-one mapping
between the failing test and the class containing the fault does
not hold and then software engineers resort to debugging [21].

Luckily, there is a class of heuristics —named spectrum
based fault localisation— which give indications for the loca-
tion of the fault. Such heuristics compare execution traces of
passing tests against the ones from a failing test, assuming
that the points where the traces differ are the most likely lo-
cation of the fault [1]. The state of the art heuristic for class
level fault localisation by analysing method call sequences in
unit tests is proposed by Dallmeier et al. with a tool called
AMPLE [4]. AMPLE traces method calls invoked by objects
and collects call sequences of the corresponding classes by
sliding a window over the executions traces. It then compares
the execution trace of all passing tests against one trace with
a failing test and deduces which class most likely contains
the fault. AMPLE was shown to be quite effective on a small
yet representative case (NanoXML): it could immediately
pinpoint the faulty class in 36% of all test runs; while on
average 21% of the executed classes (10% of all classes) must
be inspected to find the location of the fault.

In this paper we report on a replication experiment (dif-
ferent heuristic & same data) where we compare a new fault
localisation heuristic named SPEQTRA against the state of
the art AMPLE. SPEQTRA addresses two shortcomings of
the AMPLE heuristic: (a) it filters out repetitive method
calls (e.g. contained in loops) and (b) avoids the sliding win-
dow and the arbitrary upper limit on the length of the call
sequence it imposes. To address these shortcomings, SPEQ-
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TRA uses a different algorithm (closed itemset mining) to
characterise method call sequence and distinguish the faulty
ones. Via the replication experiment we demonstrate that
the ranking of classes proposed by SPEQTRA is significantly
better than the one of AMPLE: we can immediately pinpoint
the faulty class in 56% of all test runs; while on average 12%
of the executed classes (5% of all classes) must be inspected
to find the location of the fault. Moreover, for 70% of the
faults, SPEQTRA has at most one false positive whereas for
AMPLE this happens for 59% of the faults.

This paper is structured as follows. We explain the two
heuristics under investigation in Section 2. Next, we describe
the way we set up our replication experiment, including the
particular details about the NanoXML case in Section 3.
Then the bulk of the paper is contained within Section 4,
where we show the results of the comparison including some
anecdotal evidence from NanoXML. We list the related work,
showing other research on dynamic analysis within a software
evolution context in Section 5, followed by a discussion on the
threats to validity in Section 6. Finally, Section 7 summarises
our findings and lists the contributions.

2. HEURISTICS UNDER INVESTIGATION
In this section we give a detailed explanation of the two

heuristics under investigation. First, we provide some back-
ground information regarding spectrum based fault localisa-
tion which is the basis for the two heuristics (Section 2.1).
Then we contrast the two heuristics depicted in a Figure 1
showing where they are the same (i.e. collecting traces per ob-
ject — Section 2.2) and where they differ (creating sequences
of method calls — Section 2.3; the similarity coefficient used
to rank the corresponding fault locations — Section 2.4).

2.1 Spectrum Based Fault Localisation
AMPLE and SPEQTRA both are instances of the class

of spectrum based fault localisation heuristics [1]. Such
heuristics discover statistical coincidences between system
failures and the activity of the different parts of a system. All
these heuristics create a so-called program spectrum, which
is a matrix where each column corresponds to a program
entity (e.g. statement, block, sequence of method calls)
and rows represent a particular test run. For each test run
the corresponding column for program entity is marked as
1 (executed) or 0 (not executed). Alongside the program
spectrum, the heuristic also creates an error vector which is
a column where a cell is marked as 1 if the test run failed
or 0 if the test was a success. Next, the error vector is
compared against all columns in the program spectrum using
a particular similarity coefficient ; the column which is most
similar to the error vector is then the program entity which
most likely contains the fault.

2.2 Collecting Traces
AMPLE and SPEQTRA use sequences of method calls as

the program entities which are represented in each column
of the fault spectrum matrix. Both heuristics group the
outgoing method calls according to the following scheme.
Let O = {o1, o2, ..., on} be the set of object instances of the
class C and T = {t1, t2, ..., tn} be the set of object traces of
class C, where ti represents the trace of outgoing method
calls by the object oi. By outgoing method calls we mean
an object calling a method of another object. For instance if
we have an object o1 with a method m1() and hit method

hosts a call to method n1() belonging to an object o2, the
collected outgoing method call for o1 is m1().

Two objects o1 and o2 of a class C may have following
traces of method calls (Equations 1 and 2):

t1 =

{
m1,m1,m1,m2,m2,m3,
m1,m1,m2,m2,m3

}
(1)

t2 = {m1,m1,m1} (2)

AMPLE and SPEQTRA group all such object traces for the
corresponding class C which has trace set T (Equation 3).

T =

 { m1,m1,m1,m2,m2,m3,
m1,m1,m2,m2,m3},
{ m1,m1,m1}

 (3)

2.3 From Traces to Class Sequences
Traces of outgoing method calls can grow to millions of

method calls per object [3]. To reduce these traces AMPLE
and SPEQTRA each apply a different technique to arrive at
what we call Class Sequences for the remainder of the paper.

AMPLE — Sliding Window. AMPLE slides a window
of fixed size over the trace to create a list of class sequences.
From the previous example, if we fix the window size as 2
and slide it over the object traces in Equation 3 we obtain
the set of class sequences in Equation 4

CA =

{
{{m1,m1}, {m1,m2}, {m2,m2},
{m2,m3}, {m3,m1}}

}
(4)

SPEQTRA — Frequent Sequences. To avoid the arbi-
trary upper limit imposed by the size of the sliding window,
SPEQTRA incorporates the frequently appearing sequences
adopting an algorithm named closed itemset mining [20].
Given the set of object traces T of class C, we define:
• X —itemset— a set of method calls.
• σ(X) —support of X— the number of traces of T that

contain this itemset X.
• minsup —minimum support of X— a threshold used

to tune the number of returned itemsets.
• frequent itemset — an itemset X is frequent when
σ(X) ≥ minsup.
• closed itemset — a frequent itemset X is closed if there

exists no proper superset X ′ whose support is same as
the support of X (i-e. σ(X ′) = σ(X)).

From now on, we refer a closed itemset X as a frequent
sequence or simply a sequence of method calls. Adopting
closed itemset mining in the context of fault localisation,
we fix minsup to 1 because those classes which only create
one object (and thus one trace) should be included in the
program spectrum as well; this one call trace may be the one
which triggers the fault. However, we tune the algorithm
in another way. The mining algorithm also returns frequent
sequences that comprise only one method call. Since we
are looking for faults caused by complex object interactions
where objects must adhere to a certain protocol, sequences
should have at least a length of two.

From the previous example with input T (Equation 3) and
minsup = 1 the generated set of frequent sequences is:

CF = {{m1}, {m1,m3,m2}} (5)

It can be observed that the sequences such as {m2}, {m3},
{m1,m2}, {m1,m3}, {m2,m3} are not included in final set
(Equation 5), since there exists a super sequence {m1,m3,m2}
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Figure 1: Overview of the two heuristics showing three steps (i) Collecting tracing, (ii) Collecting class sequences, and (iii)
Ranking classes

with equal support. As SPEQTRA removes all frequent se-
quences of length 1, thus the sequence set CF (5) is finally
reduced into the set of Class Sequences CS in (6).

CS = {{m1,m3,m2}} (6)

2.4 Ranking Classes
Both AMPLE and SPEQTRA assign a weight W (X) to each

class sequence in CA and CS(Equation 4 and 6 respectively).
Note that X refers to a sequence of method calls, but there
is a difference in that X is a chunk of fixed size in AMPLE
whereas X is set of frequent method calls in SPEQTRA.

AMPLE — AMPLE has defined its own weighting scheme
based on a configuration of a single failing test and several
passing tests. Sequences in AMPLE are assigned a weight
between 0 and 1 using equation (7) [4].

W (X) =

{
k(X)
n

if X not in failing test

1− k(X)
n

if X in failing test
(7)

Where n is the number of passing tests and k(X) is the
number of passing tests that include the sequence X.

SPEQTRA — We tested several weighting schemes to
rank the classes. Ultimately, in SPEQTRA, we opted for
the Jaccard similarity coefficient (Equation 8) adopted from
Chen et al. [2]:

W (X) =
a11(X)

a11(X) + a01(X) + a10(X)
(8)

Where:
• a11(X) = Number of failing tests in which sequenceX

is found.
• a10(X) = Number of passing tests in which sequenceX

is found.
• a01(X) = Number of failing tests in which sequenceX

is not found.

Weight per class. Both AMPLE and SPEQTRA take the
average of all weights for all sequences of a class and assign
this weight to class C, as defined in Equation 9:

W (C) =
1

n

n∑
i=1

W (Xi) (9)

where n is the number of sequences in the class and W (Xi)
is weight of a sequence as given by Equation 7 (AMPLE) or
Equation 8 (SPEQTRA).

Finally, both heuristics rank all classes using their weights
W (C), where the one with the highest weight is the most
likely location of the fault.

3. EXPERIMENTAL SETUP
This paper is set-up as a replication experiment (differ-

ent heuristic & same data) where we compare a new fault
localisation heuristic named SPEQTRA against the state of
the art AMPLE. In what follows, we describe the way we
set up our replication experiment, including the particular
details about the NanoXML case (subsection 3.1). Next, we
provide the necessary practical details about the mechanics
of the experiment so that other researcher can replicate our
findings (subsection 3.2)

3.1 Replication Case — NanoXML
The original paper proposing the AMPLE heuristic demon-

strated its effectiveness on a small but representative project
named NanoXML [4]. NanoXML is a non-validating XML
parser written in Java. Its source code and documentation
are available in the Software-artifact Infrastructure Reposi-
tory1 [6].

NanoXML has five development versions (V1 . . . V5) where
the number of classes span from 16 to 23 (Table 1). With
the exception of version V4, all others have documented
faults that can be activated and exposed by the test suite.
These versions (V1,V2,V3,V5) —the ones we use for the
experiment— have 32 faults (cumulatively). Each version is

1http://sir.unl.edu/portal/index.php
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Table 1: NanoXML version details
Version # of classes LOC # of faults # of tests

1 16 4334 7 214
2 19 5806 7 214
3 21 7185 10 216
5 23 7646 8 216

shipped along with tests and test drivers. A test driver is a
class that sets up multiple tests by feeding them with the
required input (e.g. read a XML file). The goal of these test
drivers is to trigger one and only one feature of the project.

We collect the traces of all faults by injecting one fault
at a time and subsequently running the test suite. Then
for each test, we record the outgoing methods calls of the
created objects. It is important to note that, for each test
(passing or failing), a separate trace is maintained for each
object. All the outgoing method calls of an object appear
in their own trace. Thus, two objects o1 and o2 of the same
class C have independent traces of method calls.

In the replication experiment we activate one fault at
a time. Having 32 faults leads to 32 distinct variants of
NanoXML. Among these variants we picked only the ones
that generate at least one failing and one passing test for
each test driver. Just like in the original AMPLE experiment,
this ensures that failing and passing tests are all related to
the same functionality. For each test driver, we group one
failing test with all passing tests, the set-up that is needed
to reflect the set-up of AMPLE experiment. We repeat this
process for each failing test associated to that test driver.
At the end of this process, we end up with 18 variants of
NanoXML and 347 combinations of failing and passing tests
used for our experiments.

Note that this set-up is not exactly the same as the one re-
ported in the AMPLE paper because the version of NanoXML
we downloaded from the Software-artifact Infrastructure
Repository has been changed. In the latest version, one
fault is removed from V5 with a note “since it is overly ex-
pressive it may not be representative of a pseudo-real fault”.
As a consequence, the fault matrix also differs from the
previous version. This is an inherent risk with replication
experiments and partially explains why we do not obtain the
same results reported in the AMPLE experiment [4].

3.2 Replication Details

AMPLE replication.
When preparing for the replication experiment, we down-

loaded the original binary of the AMPLE implementation.
Due to hardware constraints, we were unable to run this bi-
nary. Consequently, we implemented our own version of the
algorithm as reported in the original AMPLE paper [4]. We
used the optimal settings for the parameters of the heuristic,
in particular we adopted a sliding window size of 8.

AspectJ. The object traces are collected by introducing
logger functionality into the NanoXML code via AspectJ2.
More specifically, we use a method call join point with a
pointcut to pick out every call site. Each time a method
call occurs, the aspect extracts the caller object and adds
a method entry to the object’s trace. The aspect is robust
for different threads that may be running within the java

2AspectJ http://eclipse.org/aspectj/

project, although this was irrelevant for the NanoXML case.
All object traces belonging to same class appear together in
a HashMap maintained for each executed class.

Static Methods are Ignored. SPEQTRA, like AMPLE,
also collects traces of method calls invoked by objects of a
class. Calls to static methods are not captured and do not
appear in the trace, hence cannot be identified as the location
of the fault. For the particular replication of the NanoXML
experiment this did not cause any problems however this
limitation must be taken into account for future replication.

Single failing test. For this experiment, we inject one
fault into the program which causes one or more tests to fail
and several of them to pass. All these tests are executed
with same test driver. In principle, SPEQTRA is able to rank
fault locations using all these failing and related passing tests.
However, since AMPLE is designed to work with only one
failing test we replicated the set-up to include the trace of a
single failing test and one or more passing tests.

Closed Itemset Mining. To avoid the arbitrary upper
limit imposed by the size of the sliding window, SPEQTRA
incorporates the frequently appearing sequences adopting an
algorithm named closed itemset mining [20]. In particular,
we used the implementation provided by the library SPMF3.

Search Length. To compare the results of the two heuris-
tics we use the so-called search length as defined in the AM-
PLE experiment [4]. The search length counts how many
classes are placed atop of the faulty class in the ranking
produced by the heuristic. In that sense, it represents how
many classes the developer has to examine before finding the
class containing the fault. The search length is zero whenever
the faulty class is placed as the first item in the ranking.

4. RESULTS AND DISCUSSION
To compare our results with AMPLE, we replicated AMPLE

with a sliding window size 8, which is the value for which
AMPLE achieved the best performance. Following the exper-
imental set-up explained in Section 3, we obtained rankings
for all the 347 combinations both with our implementation
of AMPLE and SPEQTRA. Below we discuss the results of
both.

1. Our replication experiment confirmed the results re-
ported in the original AMPLE paper. There were some
minor changes in the results, but these can be at-
tributed to the differences in the NanoXML version
used in our experiment, in particular in the tests ac-
companying the project.

2. The average search length of all rankings in 347 test
runs with both heuristics is reported in Table 2. Here
SPEQTRA has less average search length than sliding
window approach.

3. In 173 test runs out of 347, SPEQTRA outperforms
AMPLE and has search length less than AMPLE. In
140 test runs both SPEQTRA and AMPLE have same
search length, whereas in only 34 cases SPEQTRA has
search length greater than AMPLE.

4. The plot of the cumulative of search length distribution
in 347 test runs with both heuristics is given in Fig-
ure 2. With SPEQTRA, the search length of 0 covers
56% of faults, whereas with AMPLE it is only 40% of
faults. Furthermore, the worst case search length with
SPEQTRA is 6 whereas with AMPLE it is 8.

3SPMF http://www.philippe-fournier-viger.com/spmf/
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Table 2: Average Search Length in SPEQTRA and AMPLE
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Figure 2: Search Length in SPEQTRA and AMPLE.

4.1 Anecdotal Evidence
From the experiment we collected some anecdotal evidence

highlighting the main differences between the two approaches.
Specifically the two differences, namely (i) the effect of the
sliding window and (ii) the impact of repetitive method calls
(e.g. contained in loops). In Listing 1, we see a piece of
source code showing a fault in XMLElement class at line 7
which was exercised by several unit tests. This resulted in
three XMLElement object traces generated by the failing test
as shown in Listings 2, 3 and 4. Note that for brevity, method
parameters are not shown.

From these object traces in failing test, SPEQTRA gener-
ated three sequences of method calls for class XMLElement.
For brevity, we list the numbers in the sequences instead of
method calls. These numbers in the sequences represents
the line numbers in Listing 2, unless otherwise mentioned.
The line number for the method is the very first entry of
the method in the trace. The first sequence was s1 = {1, 4,
21, 24, 5, 15, 7}, the methods indicated by numbers 5 and 7
appear in Listing 3 at lines 5 and 7. The second sequence
was s2 ={1, 4, 13, 21, 24, 15} and the third sequence was
s3 = {1, 4, 21, 24, 15}. These sequences capture frequent
method calls occurring in the traces and hence represent a
good abstraction of the traces. The three sequences have
length 7, 6 and 5 respectively and none of the sequence has
repetitive method calls.

On the other hand, AMPLE generated 37 sequences for
the class, each with repetitive method calls. If we slide a
window of size 8 over the trace in Listing 2, the first se-
quence s1 = {1, 2, 3, 4 ,5, 6, 7, 8} contains 5 repetitions for
method XMLElement.findAttribute() and three repetitions
of method XMLAttribute.getFullName(). Likewise the sec-
ond sequence s2 = {2, 3, 4 ,5, 6, 7, 8, 9} contains four times
method XMLElement.findAttribute() and 4 times method
XMLAttribute.getFullName(). As a consequence, the AM-
PLE heuristic fails to locate the fault and it ranked the
faulty class on position 6 whereas SPEQTRA could pinpoint
it exactly.

Listing 1: Code snippet with a fault in XMLElement class

1 public Enumeration
enumerateAttributeNames () {

2 Vector result = new Vector ();
3 Enumeration _enum = this.attributes.

elements ();
4 while (_enum.hasMoreElements ()) {
5 XMLAttribute attr = (XMLAttribute)

_enum.nextElement ();
6 // The call should be to attr.getName ()
7 result.addElement(attr.getFullName ());
8 }
9 return result.elements ();

10 }

Listing 2: Failing trace of XMLElement object 1

1 XMLElement.findAttribute(String)
2 XMLElement.findAttribute(String)
3 XMLElement.findAttribute(String)
4 XMLAttribute.getFullName ()
5 XMLElement.findAttribute(String)
6 XMLAttribute.getFullName ()
7 XMLElement.findAttribute(String)
8 XMLAttribute.getFullName ()
9 XMLAttribute.getFullName ()

10 XMLElement.findAttribute(String)
11 XMLAttribute.getFullName ()
12 XMLAttribute.getFullName ()
13 XMLElement.getName ()
14 XMLElement.getName ()
15 XMLAttribute.getName ()
16 XMLAttribute.getName ()
17 XMLAttribute.getName ()
18 XMLAttribute.getName ()
19 XMLAttribute.getName ()
20 XMLAttribute.getName ()
21 XMLElement.getAttribute ()
22 XMLElement.findAttribute(String)
23 XMLAttribute.getFullName ()
24 XMLAttribute.getValue ()
25 XMLElement.getAttribute ()
26 XMLElement.findAttribute(String)
27 XMLAttribute.getFullName ()
28 XMLAttribute.getFullName ()
29 XMLAttribute.getValue ()
30 XMLElement.getAttribute ()
31 XMLElement.findAttribute(String)
32 XMLAttribute.getFullName ()
33 XMLAttribute.getFullName ()
34 XMLAttribute.getFullName ()
35 XMLAttribute.getValue ()

Listing 3: Failing trace of XMLElement object 2

1 XMLElement.findAttribute(String)
2 XMLElement.findAttribute(String)
3 XMLElement.findAttribute(String)
4 XMLAttribute.getFullName ()
5 XMLElement.findAttribute(String , String)
6 XMLAttribute.getName ()
7 XMLAttribute.getNamespace ()
8 XMLAttribute.getName ()
9 XMLAttribute.getName ()

10 XMLAttribute.getName ()
11 XMLAttribute.getName ()
12 XMLElement.getAttribute( )
13 XMLElement.findAttribute(String)
14 XMLAttribute.getFullName ()
15 XMLAttribute.getValue ()
16 XMLElement.getAttribute( )
17 XMLElement.findAttribute(String)



18 XMLAttribute.getFullName ()
19 XMLAttribute.getValue ()

Listing 4: Failing trace of XMLElement object 3

1 XMLElement.getName ()

There are however 34 situations where AMPLE was more
accurate than SPEQTRA. We use one fault injected in the
class NonValidator to explain this difference. The failing
test and several of the passing tests generated the same trace
for the only object of NonValidator. In this case, SPEQTRA
generated one sequence for the failing test and two sequences
for the passing tests, one of which also appeared in the
failing test. As a consequence, SPEQTRA ranked this class
on position 4 whereas AMPLE could pinpoint it exactly. This
can be explained as, the Jaccard similarity coefficient (or any
other coefficient used in spectrum based fault localisation)
assigns more weight to a sequence when it is present more
in failing tests and less in passing tests. Hence the sequence
only present in passing tests gets weight 0; the value 0 for
numerator a11(X) in equation 8 evaluates the whole equation
to 0. The other sequence presented in failing test gets a lower
weight due to its presence in several passing tests; the higher
value of denominator a10(X) in equation 8 decreases the
value. Consequently, the weight of the class, which is average
weight of the two sequences, is also less.

4.2 Discussion
Based on this replication experiment, we conclude that

SPEQTRA is significantly better than AMPLE since:
1. The average ranking in SPEQTRA is lower than AMPLE.

This average suggests that a developer has to search
through, on average, 12% of 10.25 average executed
classes or 5% of all 23 classes. This is significantly
better than AMPLE, where 20% of executed classes or
9% of all classes need to be searched.

2. A faulty class is placed first in the ranking (search
length 0) for 56% of faults by SPEQTRA whereas for
AMPLE it happens only for 40% of the faults.

3. For 70% of faults, there is atmost one false positive
(search length 1) with SPEQTRA whereas for AMPLE
this happens for 59% of the faults.

5. RELATED WORK
In this section, we present related work on spectrum based

fault localisation thus immediately relevant for this replica-
tion experiment. Moreover, we also give references to related
work on dynamic analysis for program comprehension as this
provides the broader context for our research.

5.1 Spectrum Based Fault Localisation
Spectrum based fault localisation is an automated fault

diagnosis technique based on differences in program spectra
of a program between passing and failing tests [1]. Spectrum
based fault localisation techniques have been applied in many
domains such as localising the fault and ranking program
statements [10], blocks [1], failure related components [2] and

—last but not least— classes [4].
• Jones et al. used statement-hit spectra to rank state-

ments of C programs according to their likelihood to
be at fault [10]. To visualize the ranking, they imple-
mented a tool — Tarantula — able to mark statements

with colors that span from red (statement likely at
fault) to green (statement unlikely at fault).
• Abreu et al. used blocks-hit spectra to rank the blocks

in order of their likelihood to be at fault [1]. Here
the block is defined as C language statement where
compound statement (statements inside curly brackets)
counts as a single statement. They compared the per-
formance of different similarity coefficients and their
impact on diagnostic accuracy of spectrum based fault
localisation technique.
• Chen et al. implemented the tool Pinpoint for tracing

client requests in Internet service environments. Pin-
point records the components involved in the service
and whether or not the request is satisfied [2]. The tool
correlates the request failures to the components that
most likely caused the failure.

All previous papers detect the fault at different levels of
granularity(e.g., statements, blocks). However, none of them
uses spectrum based fault localisation to identify faults due
to method call sequences. In the literature, the only two
techniques able to localise faults related to method call se-
quence are AMPLE and MCA-E. AMPLE is a tool, created by
Dallmeier et al., that traces method calls invoked by objects
and collects call sequences of the corresponding classes [4].
The outcome of the tool is a list of classes ranked according
to their likelihood to be at fault. MCA-E is a technique pro-
posed by Tu et al. in order to improve the regular spectrum
based fault localisation techniques adopted in AMPLE [17].
Its outcome is a list of statements ranked according to their
likelihood to be at fault. In the first step, it computes the
likelihood of classes to be at fault (suspiciousness) by taking
into account the difference of their method call sequences
between passing and failing tests. In the second step, the sus-
piciousness of classes is used together with their statements
to generate ranking of statements. One of the limitations of
AMPLE and MCA-E approaches is the adoption of a window
of finite size that slides over the execution traces. Such sliding
a window is not efficient for computing the sequences since
method calls may stem from loops or may repeat in a trace
resulting into sequences with repetitive method calls which
add overhead with little extra information. Furthermore, the
number of sequences linearly increases as the size of the trace
increases. With window size w and n number of method
calls in a trace, nw sequences are possible. In this paper we
address the shortcomings related to the sliding window by
mining the frequent method call sequences. The sequence
mining alleviates the arbitrary upper limit on the length of
the call sequence. It also optimises the computational power
required to obtain the ranking of classes as the mining algo-
rithm limits the frequent sequences to closed ones: and also
the SPEQTRA removes one-length sequences, the number of
SPEQTRA sequences is far less than sliding a window over
the trace.

It also optimises the computational power required to
obtain the ranking of classes as it generates far less sequences
than sliding a window over the trace.

5.2 Program Comprehension
Discovering program invariants and specifications such as

legal method call sequences are common goals of research
in program comprehension [8, 9, 13]. Such specifications,
achieved by means of dynamic analysis, are used for purposes
including documentation, learning the API’s etc.



Ernst et al. implemented the tool Daikon to dynamically
detect program invariants [8]. An invariant is defined as
a property that is true at a particular program point or
points. Daikon runs an instrumented program over a series of
test runs and records program properties. At the invariant
detection stage it starts with a list of hypothetical invari-
ants comparing them across all the traced properties of the
program for all test runs. It immediately discards the hy-
pothetical invariant the moment it does not hold for a test
run. Finally, all the invariants that are validated across all
test runs are reported. Daikon can also be used to detect
invariant violations in failing tests and as such may be used
in a similar set-up as what we report here.

Gabel et al. implemented OCD, a tool which traces method
calls and, using a predefined template as a model for specifi-
cation inference, learns and enforces temporal specifications
over method call sequence [9]. The algorithm suffers from two
limitations: (1) the template limits the sequence to comprise
only two method calls and (2) the sequences inferred from a
limited window size. The efficiency of the algorithm critically
depends on the window size. Experimenting with Eclipse
and Ant, the tool detected a few anomalies as violations of
inferred sequences, though the anomalies did not result in
program crashes.

Pradel et al. proposed a dynamic analysis technique to
infer specifications of correct method call sequences [13]. The
technique focuses on object collaboration, namely objects
and method calls used together in the execution of a single
method. By running a software program, the technique traces
method calls, computes object collaborations and identifies
patterns among these collaborations. From these patterns,
the technique infers the legal method call sequence in the
form of finite state machines.

To certain extent, our research on SPEQTRA is comple-
mentary to the previous ones. We use method call sequences
of a class from passing tests, which can be assumed as usage
patterns of the program. On the other hand, the sequences
in failing tests can be considered as deviant behaviour.

6. THREATS TO VALIDITY
Following the template for case studies in [18], we discuss

the threats to validity that can affect our results.
Threats to external validity correspond to the general-

izability of our experimental results. Our study is limited to
the object oriented system NanoXML. Although NanoXML
is small project, it represents a good testbed since it provides
documented tests and faults for replicating our study. More-
over, by using the same case study of Dallmeier et al. [4], we
were able to verify the impact of removing the sliding window
and adopting different similarity coefficients for mining faults
in stack traces. Nevertheless, it is desirable to replicate our
findings using other projects.

Threats to internal validity concern confounding fac-
tors that can influence the obtained results. Our approach
leverages on the fault’s “ability” of changing the stack trace
generated by software execution. In that sense, we localise
faults by pointing out the class that has different method
call sequences (in passing and failing tests) assuming that
such deviation is due to the fault. This assumption is a
key-element in spectrum based fault localisation techniques
based on method call sequences [4, 17] and our results con-
firm its general validity. On the other hand, there are cases
where it does not apply. In NanoXML there is (only) one

faulty class that cannot be localised —with our approach—
since the fault is caused by a variable accessed without any
method call.

Threats to construct validity focus on how accurately
the observations describe the phenomena of interest. Our
experiment relies on the correct identification of fault respon-
sible for test failure. From this point of view, we do not have
threats to construct validity since we inject one fault at the
time. When the fault is injected, otherwise the test passes.

Threats to reliability validity correspond to the degree
to which the same data would lead to the same results when
repeated. We describe all steps of our technique and provide
references on any tool or library involved in the analysis.
The case study we use is publicly available in the Software-
artifact Infrastructure Repository4, a repository created for
supporting rigorous controlled experimentation with program
analysis and software testing techniques [6].

7. CONCLUSION
In this paper we presented a novel spectrum based fault

localisation heuristic (named SPEQTRA) which used closed
itemset mining to identify the characteristic method call
sequences and the Jaccard similarity coefficient to rank the
classes according to the likelihood of containing the fault. We
compare our fault localisation heuristic with the state of the
art (AMPLE) and demonstrate on a small yet representative
case (NanoXML) that the ranking of classes proposed by
SPEQTRA is significantly better than the one of AMPLE. In
particular, SPEQTRA can immediately pinpoint the faulty
class in 56% of all test runs (against 40% for AMPLE); while
on average 12% of the executed classes must be inspected
to find the location of the fault (against 20% for AMPLE).
From anecdotal evidence, we deduce that the main reason
why SPEQTRA performs better than AMPLE is due to closed
itemset mining: this filters out repetitive method calls (e.g.
contained in loops) and avoids the arbitrary upper limit
imposed by the sliding window. Nevertheless, for a few faults
AMPLE provides a better ranking than SPEQTRA, caused by
call sequences appearing in both failing and many passing
tests which reduced the weight of sequences.

Over the course of this research, we have made the following
contributions:
• Replication Experiment. We conducted a replication

of the AMPLE experiment performed by Dallmeier et
al. [4]. We used the same data (the NanoXML case
provided in the Software-artifact Infrastructure Repos-
itory [6]) and confirmed the numbers provided in the
original report.
• Alternative Heuristic. We proposed an alternative spec-

trum based fault localisation heuristic (named SPEQ-
TRA). We compared it against the results from AMPLE.
We demonstrate that the ranking of classes proposed
by SPEQTRA is significantly better than the one of
AMPLE.
• Anecdotal Evidence. We collected some anecdotal evi-

dence from the NanoXML case interpreting the main
differences between the two heuristics.

Fault localisation heuristics are particularly relevant in
modern software engineering owing to the increasing popular-
ity of continuous integration. Continuous integration states
that software engineers should merge their working copies

4http://sir.unl.edu/portal/index.php



with the main branch several times a day using a suite of
automated tests to verify the correctness of the build. When
one of the thousands of tests fails, the corresponding fault
should be localised as quickly as possible as development can
only proceed when the fault is repaired. In that sense our
work shows that while the state of the art is rapidly advanc-
ing, it is worthwhile to make improvements on research from
a decade ago.
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