

M.Phil. Thesis

 POLICY-BASED CONTEXT-AWARE ARCHITECTURAL

ADAPTATION IN PERVASIVE COMPUTING

THESIS SUBMITTED TOWARDS THE PARTIAL FULFILMENT OF THE

REQUIREMENT OF THE UNIVERSITY OF SINDH, FOR THE AWARD OF

MASTER OF PHILOSOPHY DEGREE IN INFORMATION TECHNOLOGY

GULSHER LAGHARI

Institute of Information and Communication Technology

University of Sindh, Jamshoro

2014

I

CERTIFICATE

This is to certify that the work present in this thesis entitled “Policy-based

Context-aware Architectural Adaptation in Pervasive Computing” has been

carried out by Gulsher Laghari under our supervision. The work is genuine,

original and, in our opinion, suitable for submission to the University of Sindh

for the award of degree of Master of Philosophy in Information Technology.

SUPERVISOR

Dr. Lachhman Das Dhomeja

Professor

Institute of Information and Communication Technology

University of Sindh, Jamshoro Pakistan

CO-SUPERVISOR

Dr. Yasir Arfat Malkani

Assistant Professor

Institute of Mathematics & Computer Science

University of Sindh, Jamshoro Pakistan

II

DEDICATION

I dedicate

this thesis

to my whole family,

specially my beloved

mother.

III

ACKNOWLEDGEMENTS

First of all, I would like to show my greatest appreciation and thank to my

supervisor Prof. Lachhman Das Dhomeja for his continuous support, guidance,

care and patience during the course of this work. The good advice and support of

my co-supervisor Dr. Yasir Arfat Malkani also deserves special mention here

that has ever been invaluable to me. I would like to express my sincere gratitude

to him for his patience, motivation and valuable feedback. This thesis would not

have been possible without the help and support of both of them.

I am also thankful to all of my teachers, friends and people who have

always remained supportive to me.

Last but not least, I am highly indebted to my family and in-laws for their

love, care, patience and being with me through all the ups and downs of life.

IV

DECLARATION

I hereby declare that the work present in this thesis has been carried out by me

and that this thesis has not been and will not be, submitted in whole or in part to

another University for the award of degree of Master of Philosophy in

Information Technology or any other degree.

V

CONTENTS

CERTIFICATE .. I

DEDICATION ... II

ACKNOWLEDGEMENTS ... III

DECLARATION .. IV

CONTENTS .. V

LIST OF FIGURES ... IX

GLOSSARY ... XI

ABSTRACT .. XII

CHAPTER 1INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.4 CONTRIBUTIONS OF THE THESIS .. 3

1.5 STRUCTURE OF THE THESIS ... 3

CHAPTER 2 BACKGROUND AND RELATED WORK 5

2.1 DEFINITION OF CONTEXT .. 5

2.2 ADAPTATION PROCESS .. 5

2.3 ADAPTATION TYPES ... 7

2.4 APPROACHES TO REALIZING COMPOSITIONAL ADAPTATION 8

2.5 STATE-OF-THE-ART .. 10

2.6 SUMMARY .. 13

CHAPTER 3 PCAA INFRASTRUCTURE... 14

3.1 DESIGN GOALS OF PCAA INFRASTRUCTURE .. 14

3.1.1 SEPARATION OF CONCERNS ... 14

3.1.2 SOFTWARE ARCHITECTURE BASED ADAPTATION 15

3.1.3 DYNAMIC MODIFICATION OF ADAPTATION POLICIES 17

3.2 INTRODUCTION TO PCAA INFRASTRUCTURE.. 17

3.3 MAIN ELEMENTS OF PCAA INFRASTRUCTURE.. 20

3.3.1 REUSABLE RECONFIGURATION MANAGEMENT COMPONENT 21

3.3.2 POLICY SYSTEM .. 22

3.3.3 CONTEXT SIMULATOR WIDGETS .. 23

3.4 WORKING OF PCAA INFRASTRUCTURE .. 23

3.5 CAPABILITIES AND LIMITATIONS OF PCAA INFRASTRUCTURE 24

3.5.1 CAPABILITIES ... 24

VI

3.5.2 LIMITATIONS .. 24

3.6 SUMMARY .. 25

CHAPTER 4 PROTOTYPE SYSTEM IMPLEMENTATION 26

4.1 REUSABLE RECONFIGURATION MANAGEMENT COMPONENT 26

4.1.1 USER INTERFACE .. 26

4.1.2 PARSER .. 27

4.1.3 CONFIGURATOR .. 28

4.1.4 IN-MEMORY SOFTWARE ARCHITECTURAL MODEL 29

4.1.5 REMOTE LISTENER .. 29

4.1.6 CACHE MANAGER ... 29

4.1.7 CONFIGURATION LANGUAGE ... 30

4.1.7.1 Add command ... 31

4.1.7.2 Bind command .. 31

4.1.7.3 Replace command ... 32

4.1.7.4 Start command .. 32

4.2 POLICY SYSTEM ... 33

4.2.1 PONDER2 .. 33

4.3 CONTEXT SIMULATOR WIDGETS ... 34

4.4 COMPONENT MODEL IN PCAA INFRASTRUCTURE .. 35

4.4.1 PCAA INFRASTRUCTURE COMPONENT MODEL API 35

4.4.1.1 Component interface and Class .. 35

4.4.1.2 Connector Interface and Class ... 36

4.4.1.3 Input and Output Interfaces ... 37

4.4.1.4 IRunner Interface .. 37

4.5 SUMMARY .. 37

CHAPTER 5 EXAMPLE APPLICATIONS AND EVALUATION 38

5.1 LOCATION BASED MESSAGE DELIVERY ... 38

5.2 SMART NOTICE BOARD ... 42

5.3 CONTEXT-AWARE COMPRESSION SERVER .. 46

5.4 EVALUATION .. 49

5.4.1 PERFORMANCE ANALYSIS ... 49

5.4.2 DYNAMIC MODIFIABILITY OF ADAPTATION POLICIES 54

5.5 SUMMARY .. 55

CHAPTER 6 CONCLUSION AND FUTURE WORK 56

6.1 CONCLUSION .. 56

6.1.1 SUMMARY OF CONTRIBUTIONS OF THIS THESIS ... 57

VII

6.2 FUTURE WORK .. 58

REFERENCES ... 59

APPENDIX A PCAA INFRASTRUCTURE COMPONENT MODEL API 66

A.1 COMPONENT INTERFACE .. 66

A.2 COMPONENT CLASS ... 66

A.3 CONNECTOR INTERFACE .. 67

A.4 CONNECTOR CLASS ... 68

A.5 INPUT INTERFACE .. 69

A.6 OUTPUT INTERFACE ... 69

A.7 IRUNNER INTERFACE ... 70

APPENDIX B CODE OF HYPOTHETICAL EXAMPLE APPLICATIONS 71

B.1 LOCATION BASED MESSAGE DELIVERY APPLICATION 71

B.1.1 MESSAGEFORWARDER COMPONENT .. 71

B.1.2 MESSAGERECEIVER COMPONENT .. 72

B.1.3 SMARTPHONE COMPONENT .. 73

B.1.4 SMARTTV COMPONENT .. 74

B.1.5 CONNECTOR ... 76

B.1.6 DATA CLASS .. 76

B.1.7 DATAIN CLASS ... 76

B.1.8 RENDEREDDATA CLASS .. 77

B.2 SMART NOTICE BOARD APPLICATION ... 78

B.2.1 SMARTNOTICEBOARD COMPONENT .. 78

B.2.2 STUDENT DATA COMPONENT .. 79

B.2.3 TEACHERDATA COMPONENT .. 80

B.2.4 VIEW COMPONENT 1 ... 81

B.2.5 VIEW COMPONENT 2 ... 81

B.2.6 CONNECTOR ... 82

B.2.7 DATA CLASS .. 82

B.2.8 RENDEREDDATA CLASS .. 83

B.3 CONTEXT-AWARE COMPRESSION SERVER ... 83

B.3.1 DATASTORE COMPONENT ... 83

B.3.2 PROVIDER COMPONENT .. 84

B.3.3 COMPRESSOR COMPONENT 1... 86

B.3.4 COMPRESSOR COMPONENT 2... 87

B.3.5 CONNECTOR ... 88

B.3.6 DATAOUT CLASS ... 88

VIII

B.3.7 COMPRESSED CLASS ... 88

B.3.8 FORCOMPRESS CLASS... 89

IX

LIST OF FIGURES

FIGURE 2.1 ADAPTATION PROCESS .. 6

FIGURE 2.2 ADAPTATION TYPES AND APPROACHES .. 8

FIGURE 3.1 WORKING MECHANISM OF THE PCAA INFRASTRUCTURE 20

FIGURE 3.2 HIGH LEVEL ARCHITECTURE OF PCAA INFRASTRUCTURE 21

FIGURE 4.1 THE USER INTERFACE OF RECONFIGURATION MANAGEMENT COMPONENT 27

FIGURE 4.2 THE SYNTAX OF ADD COMMAND FOR ADDING A COMPONENT 31

FIGURE 4.3 THE SYNTAX OF ADD COMMAND FOR ADDING A CONNECTOR 31

FIGURE 4.4 THE SYNTAX OF BIND COMMAND ... 32

FIGURE 4.5 THE SYNTAX OF REPLACE COMMAND ... 32

FIGURE 4.6 THE SYNTAX OF START COMMAND ... 33

FIGURE 4.7 LOCATION CONTEXT WIDGET ... 34

FIGURE 4.8 USER CONTEXT WIDGET ... 34

FIGURE 5.1 HIGH LEVEL DIAGRAM OF LBMD APPLICATION .. 39

FIGURE 5.2 INITIAL SOFTWARE ARCHITECTURE OF THE LBMD APPLICATION 39

FIGURE 5.3 TV POLICY SPECIFICATION .. 40

FIGURE 5.4 BEDROOM POLICY SPECIFICATION ... 41

FIGURE 5.5 ADAPTATION IN LBMD APPLICATION AS REPLACEMENT OF COMPONENTS 41

FIGURE 5.6 HIGH LEVEL DIAGRAM OF SMART NOTICE BOARD APPLICATION 43

FIGURE 5.7 INITIAL SOFTWARE ARCHITECTURE OF THE SNB APPLICATION 43

FIGURE 5.8 TEACHER POLICY SPECIFICATION ... 44

FIGURE 5.9 STUDENT POLICY SPECIFICATION ... 45

FIGURE 5.10 ADAPTATION IN SNB APPLICATION AS REPLACEMENT OF COMPONENTS 45

FIGURE 5.11 HIGH LEVEL DIAGRAM OF COMPRESSION SERVER APPLICATION 46

FIGURE 5.12 INITIAL SOFTWARE ARCHITECTURE OF THE SERVER APPLICATION 47

FIGURE 5.13 POLICY SPECIFICATION FOR BANDWIDTH LESS THAN 100 48

FIGURE 5.14 POLICY SPECIFICATION FOR BANDWIDTH GREATER THAN 100 48

FIGURE 5.15 ADAPTATION IN SERVER APPLICATION AS REPLACEMENT OF COMPONENTS 49

FIGURE 5.16 EQUATION FOR TOTAL ADAPTATION TIME ... 49

FIGURE 5.17 EQUATION FOR RECONFIGURATION TIME .. 50

FIGURE 5.18 GRAPH SHOWING TOTAL ADAPTATION TIME () ALONG WITH

STANDARD DEVIATION .. 51

FIGURE 5.19 GRAPH SHOWING TOTAL ADAPTATION TIME () ALONG WITH

CONFIDENCE INTERVALS ... 51

FIGURE 5.20 GRAPH SHOWING APPLICATION ADAPTATION TIME () ALONG

WITH STANDARD DEVIATION ... 52

FIGURE 5.21 PIE CHART SHOWING PERCENTAGE OF DIFFERENT ADAPTATION TIMES 52

X

FIGURE 5.22 GRAPH SHOWING TOTAL ADAPTATION TIME () ALONG WITH

STANDARD DEVIATION WITH CACHE ENABLED .. 53

FIGURE 5.23 GRAPH SHOWING TOTAL ADAPTATION TIME () ALONG WITH

CONFIDENCE INTERVALS WITH CACHE ENABLED ... 53

FIGURE 5.24 MODIFIED BEDROOM POLICY SPECIFICATION .. 54

XI

GLOSSARY

ADL Architecture Description Language

AEM Architectural Evolution Manager

CHAM Chemical Abstract Machine

ECA Event-Condition-Action

JESS Java Expert System Shell

LBMD Location Based Message Delivery

PCAA Policy-based Context-aware Architectural Adaptation

SNB Smart Notice Board

XII

ABSTRACT

The primary goal of pervasive computing is to support user tasks, satisfy user

needs and enrich user experience with minimal or no user distraction. Context-

awareness in general and context-aware adaptation in particular is central to

achieving this goal. Context-aware adaptation is a process of obtaining

contextual information, reasoning about it and adapting the application.

The main argument of our thesis is that in existing adaptation approaches,

various concerns involved in adaptation process – adaptation policies and

adaptation mechanisms are tightly coupled with an application being adapted,

making applications difficult to build and modify at runtime. We address this

issue and propose our policy and architecture centric approach to context-aware

adaptation in which both adaptation policies and adaptation mechanisms are

separate and external to the application being adapted. In particular, adaptation

policies are high-level declarative Event-Condition-Action (ECA) rules, which

are strongly decoupled from rest of the application code and dynamically

modifiable.

The thesis provides design goals of Policy-based Context-aware

Architectural Adaptation (PCAA) infrastructure, discusses its main design

elements and implementation. The PCAA infrastructure allows developing and

executing context-aware adaptive applications at software architectural level and

using ECA policies. The infrastructure supports specification of application in a

small configuration language, initialization of application from its specification

and encapsulates compositional adaptation mechanism to adapt the application

dynamically. We, finally, evaluate performance of PCAA infrastructure and

support for dynamic modifiability of adaptation policies.

1

INTRODUCTION

In this chapter we provide motivation and contributions of this thesis and at the

end of the chapter, we present structure of the rest of the thesis.

1.1 MOTIVATION

In 1991, Mark Weiser in his seminal paper (Weiser September 1991) introduced

the notion of pervasive computing in which he predicted that computing will

move beyond desktop and become ubiquitous and invisible to the user.

Satyanarayanan (Satyanarayanan 2001) attributes the invisibility as “minimal

user distractions”. For pervasive computing applications to be able to perform

user tasks with minimal user distractions, they need to adapt themselves in

response to context. This makes context-aware adaptation as a fundamental

requirement for many pervasive computing systems.

In pervasive computing environments, context-aware adaptation is

initiated by a particular context event or a set of context events with an aim to

satisfy user needs and preferences or to enrich user experience. This requires that

the applications monitor their environment (contexts), reason upon context

changes (adaptation policies) and adapt accordingly. There exist a number of

approaches to context-aware adaptation, in which adaptation support is provided

in the form of programming languages, middleware and software architectures

(detailed discussion of this is presented in Section 2.3 and Section 2.4). While

adaptation approaches based on these categories have contributed towards this

goal, our literature survey reveals that software architecture based approach is

more promising, as it provides a clean separation of adaptation support from an

application being adapted, and it operates at a higher level of abstraction—

software architecture level.

2

Existing architectural adaptation approaches have received more focus on

architectural reconfiguration (i-e. specific methods, technologies, tool support,

etc.), while a little attention has been paid on another important facet of context-

aware adaptation—adaptation policies. Adaptation policy support in existing

approaches is limited in that (1) the adaptation concerns are tightly bound to

application code and (2) dynamically un-modifiable, thus making applications

difficult to build and modify at runtime.

We address aforementioned limitations and present our approach to

context-aware adaptation by developing mechanisms and supporting toolset. The

core of our approach is the use of policies and software architectures for

development and execution of adaptive context-aware applications. In our

approach, application is specified as a configuration of software components and

software connectors. The adaptation concerns (when and how an application

adapts) are specified as Event-Condition-Action (ECA) policies. An ECA policy

subscribes to a context event. When context event occurs and the condition is

true, the policy is enforced. The aim of our work is to have a modular and

flexible approach for development and execution of adaptive context-aware

applications. Towards this end, our approach is based on software architectures

and adaptation policies by following separation of concerns principle, in which

all concerns involved in adaptive context-aware application (adaptation policies,

adaptation mechanisms) are separate and external to an application being

adapted. Proposed approach requires writing a configuration code (i-e.

expression of an application at software architecture level) and then running it.

Once the application is running, adaptation concerns expressed as ECA polices

are later added to the application. In particular, ECA policies are dynamically

modifiable. Separation of concerns and the support for dynamic modifiability of

adaption policies provide ease of development and support dynamic

programmability of applications, which is an essential requirement for

applications running in pervasive computing environments.

3

1.4 CONTRIBUTIONS OF THE THESIS

In this thesis, we present a Policy-based Context-aware Architectural Adaptation

(PCAA) infrastructure for development and execution of adaptive context-aware

applications running in pervasive computing environments. The contributions of

the thesis can be described in terms of the features of the PCAA infrastructure,

which include:

 Software architectural adaptation support: This includes design and

implementation of runtime support for application initialization and its

adaptation. Application initialization involves transforming an initial software

architecture description of the application into running system. Adaptation

support involves reconfiguring the architecture, thereby adapting the running

application.

 Dynamic programmability of context-aware applications: Dynamic

programmability of applications is achieved with support of dynamic

modifiability of adaptation policies. Adaptation policies are specified

separately of the application configuration code and can be modified

dynamically.

 Separation of concerns: In our approach, all the adaption concerns involved

in adaptation process (i-e. application being adapted, adaptation mechanisms

and adaptation policies) are handled separately from each other. This greatly

contributes towards reducing complexity involved in the development of

adaptive context-aware applications.

1.5 STRUCTURE OF THE THESIS

Chapter 2 presents the definition of context, elaborates the adaptation process

which involves three sub phases: context monitoring, adaptation policies and

adaptation acting. It then discusses two types of adaptations: Parameter

adaptation and Compositional adaptation along with discussion on approaches to

achieving compositional adaptation. Finally, it provides the review of state-of-

the-art architectural adaptation approaches.

4

Chapter 3 is organized as follows: Section 3.1 provides the design goals of the

Policy-based Context-aware Architectural Adaptation (PCAA) infrastructure.

Section 3.2 introduces the PCAA infrastructure. Section 3.3 describes the main

design elements of PCAA infrastructure. Section 3.4 describes how does PCAA

infrastructure work and finally Section 3.5 discusses the capabilities and

limitations of PCAA infrastructure.

Chapter 4 presents the high level architecture of the system and describes

implementation of each design element of the PCAA infrastructure. It provides

the syntax and description of commands present in small configuration language

that we have developed as part of this work. Finally, the chapter ends with

discussion on PCAA component model.

Chapter 5 presents the design, development and execution of some hypothetical

example adaptive applications using PCAA infrastructure. It also discusses and

presents the policy specifications for the scenarios where these hypothetical

applications need to adapt at runtime in response to change in their contexts.

Finally, it provides the evaluation of the thesis.

Chapter 6 provides the conclusions of this thesis and outlines some future

research directions.

5

BACKGROUND AND RELATED WORK

In this chapter, we present the definition of context, elaborate the adaptation

process, discuss adaptation types and explore the approaches to achieving

compositional adaptation. Since our context-aware adaptation approach is based

on software architectures, this chapter finally reviews state-of-the-art systems

focusing on software architecture-based adaptation.

2.1 DEFINITION OF CONTEXT

While many researchers (Schilit, Adams et al. 1994, Brown, Bovey et al. 1997,

Chen and Kotz 2000, Chalmers, Dulay et al. 2004) have defined context, we take

the definition of context given by (Abowd, Dey et al. 1999), which is widely

accepted. It defines context as:

“Any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and the

applications themselves”.

Based on this definition, contextual information can include any

information that characterizes the situation of a participant in an interaction, be

that resource variation, mobility aspects, user location, preferences of the user,

user activity, lighting, noise level, temperature, etc.

2.2 ADAPTATION PROCESS

Adaptive context-aware applications are required to monitor their environment to

acquire contextual information, reason about context changes and adapt

6

accordingly. Adaptation process (Figure 2.1) comprises of following three sub-

phases.

 Context monitoring: In this sub-phase, contextual information (such as

environmental or user context information) is acquired through sensors

installed in the environment. This information is further translated into

high level context events which may initiate adaptation process.

 Adaptation policies: In this sub-phase, adaptation concerns (such as

when and how to adapt the application) are specified. This may involve

making decisions about what adaptation actions to execute, in response to

changes in contextual information received from context monitoring sub-

phase.

 Adaptation Acting: In this sub-phase adaptation decisions are

implemented using suitable adaptation mechanisms (such as parametric

adaptation, reconfiguration or code mobility, etc.) to adapt the

application.

Contexts

Context
Monitoring

Adaptation
Policies

Adaptation
Acting

Adaptation
achieved

Figure 2.1 Adaptation process

7

2.3 ADAPTATION TYPES

In the literature (McKinley, Sadjadi et al. 2004, Fox and Clarke 2009), two

approaches have been examined and employed to realize dynamic adaptation:

parameter adaptation and compositional adaptation. In parametric adaptation, an

application is fine-tuned by adjusting parameter values. For example, decreasing

or increasing the sound of a music service by adjusting volume property, at the

time the user is having a conversation on the telephone. This method of adapting

an application has been extensively employed in various approaches. The recent

approaches making use of this adaptation method to achieve dynamic application

adaptation include (Salber, Dey et al. 1999, Sousaand and Garlan 2002, David

and Ledoux 2003, Dhomeja 2011, Floch, Frà et al. 2013). The parametric

adaptation approach is limited in a sense that new behaviors / algorithms,

unforeseen during application development, cannot be adopted. It only allows

adjusting the values of application properties or switching between existing

algorithms to adapt the behavior of the application (McKinley, Sadjadi et al.

2004). Unlike parametric adaptation, in compositional adaptation, the application

is reconfigured by modifying architectural topology of application. Since

structural parts of an application are decoupled, it allows its structural parts to be

added, detached, or replaced. As new behaviors and algorithms, unforeseen at

application design time, can dynamically be adopted in the application, the

compositional adaptation approach is more flexible than parametric adaptation.

Different terms are interchangeably used for compositional adaptation such as

reconfiguration, structural adaptation, and application code adaptation.

A number of approaches have been proposed in the literature to achieving

context-aware adaptation based on compositional adaptation. A survey of these

approaches can be found in (Aksit and Choukair 2003, McKinley, Sadjadi et al.

2004, Mukhija 2007). These can be classified as approaches providing

programming language features, approaches based on middleware and

approaches exploiting software architectures (Figure 2.2). Adaptation approach

based on software architecture is more promising, as it provides a clean

separation of adaptation support from an application being adapted. Also it

operates at a greater level of abstraction—software architecture level).

8

The architecture of a software system represents the system as an

organization of computational elements (components) and their interconnection

(connectors) (Shaw and Garlan 1996). In software architectural adaptation

approaches, the software architecture of an application is used to reason about

and make changes in the application. The software architecture is kept and

deployed along with application and the adaptation is carried out by making

changes in software architecture of the application, these changes are also reified

in the running application. Since architectural adaptation approach separates and

externalizes adaptation mechanisms from application code and operates at

software architectural level, it allows the developers to focus on system structure

than a set of program statements (Oreizy, Medvidovic et al. 1998). This

contributes to easing development and modification of adaptive applications.

Adaptation types

Parameter Adaptation

 no support for adoption of new

strategies/algorithms

 allows only fine-tuning of

applications

 requires to shut down and restart

application in order to adapt

Compositional Adaptation

 support for adoption of

new strategies/

algorithms

 allows reconfiguring

structure of the

application

Programming Languages-based

 adaptation highly specific to

applications

 adaptation support combined and

internal to the applications

 require to shut down the

application, modify the code

recompile and restart the

application

Middleware-based

 adaptation support separate

and external to applications

 responsibility of adaptation

delegated to the middleware

 require to understand the

code of APIs that are low-

level abstractions

Software architecture-based

 adaptation support separate and

external to applications

 operates at high level of

abstraction

 allows developers to abstract

away fine-grained details and

focus on big picture

Figure 2.2 Adaptation types and approaches

2.4 APPROACHES TO REALIZING COMPOSITIONAL ADAPTATION

There exists a large body of research supporting compositional adaptation and

the approaches providing adaptation support in the form of (1) programming

languages, (2) middleware and (3) software architectures. Programming

9

languages supporting compositional adaptation include CLOS and Python. Later,

ContextL (Costanza and Hirschfeld 2005), ContextPy (Schubert 2008) and

PyContext (Löwis, Denker et al. 2007). Other languages supporting

compositional adaptation include ContextS (Hirschfeld, Costanza et al. 2008),

ContextR (Schmidt 2008) and ContextJS that extend SmallTalk, Ruby and

JavaScript respectively. There is another class of programming languages that

extend a Java programming language to support compositional adaptat ion. These

include Open Java (Tatsubori, Chiba et al. 2000), R-Java (de Oliveira Guimarães

1998), Handi-Wrap (Baker and Hsieh 2002), Adaptive Java (Kasten, McKinley

et al. 2002), ContextJ (Appeltauer, Hirschfeld et al. 2011), ContextAJ

(Appeltauer, Hirschfeld et al. 2008). A detailed survey of these languages can be

found in (McKinley, Sadjadi et al. 2004, Appeltauer, Hirschfeld et al. 2009). In

approaches providing programming language features, the adaptation

mechanisms are very specific to applications and strongly coupled with

application source code. Moreover, no attention has been paid on another

important component of adaptive applications called adaptation policies, in that

the policies are tightly bound with application code, hence cannot be modified

dynamically. These limitations of language-based approaches pose inflexibility

in the sense that context-aware applications are both difficult to write and

modify dynamically.

Middleware / runtime systems such as (Hallsteinsen, Floch et al. 2005,

Gjørven, Eliassen et al. 2006, Mukhija 2007, Dhomeja 2011) offer an alternate

solution to runtime adaptation, where adaptation support is delegated to

middleware, hence separate and external to the application. This separation

provides application transparent adaptation and contributes towards reducing

development efforts. However, these solutions provide APIs to code applications

that are low-level abstractions, requiring a fair amount of system knowledge to

code the applications. A detailed survey and discussion on these approaches is

provided in (McKinley, Sadjadi et al. 2004, Mukhija 2007).

Another approach used is software architecture based which exploits

software architectures to achieve dynamic adaptation. As in middleware based

approaches, this also separates and externalizes adaptation support from the

10

application code. Early dynamic architectural adaptation approaches include

CHAM (Inverardi and Wolf 1995), graph grammars (Le Métayer 1998) and

architectural description language (ADL) based (e.g. Rapide (Luckham and Vera

1995), Darwin (Magee and Kramer 1996), Dynamic Wright (Allen, Douence et

al. 1998)). They were not widely accepted owing to two main reasons: (1) they

lacked associated tool support and (2) dynamic adaptation support was limited

which only allowed, for instance, replicating existing components a number of

times (Oreizy, Medvidovic et al. 2008). Later adaptation approaches based on

software architectures better addressed these limitations with tool support. The

prominent ones include (Oreizy, Medvidovic et al. 1998, Oreizy and Taylor

1998, Dashofy, Hoek et al. 2002, Garlan, Cheng et al. 2004).

2.5 STATE-OF-THE-ART

(Oreizy, Medvidovic et al. 1998) present an approach to evolving software at

runtime using software architectures. The software system is described as

configuration of software components and connectors. The architectural style is

event-based and layered that uses connectors to mediate communication between

components. The style is called C2-style (Taylor, Medvidovic et al. 1995). They

use software architectural model of software to reason about and make changes

in the software at runtime. The model is explicitly maintained and deployed

along with software system implementation and causally connected to it. The

model contains description of components, connectors, their interconnection and

their mapping to implementation units. The system is evolved through modifying

architectural model. The modifications are achieved by applying architectural

changes. The architectural changes may be adding a software component

(attaching new behaviour), removing software component (excluding existing

behaviour), replacing old components with other new component (modifying

existing behaviour) or making structural changes to rearrange the composition of

components and connectors. The tools are provided to introduce architectural

changes. Agro allows making changes as graphical manipulations. Text based

modification commands can be issued through ArchShell. While, Extension

Wizard allows to execute modification scripts. The work is an initial attempt

towards runtime software adaptation using software architectures; however it

11

does not address the specification and dynamic management of adaptation

policies.

(Oreizy, Gorlick et al. 1999) present an architecture-centric approach to

runtime software self-adaptation. In this, self- adaptation process comprises of

adaptation management and evolution management. Adaptation management

involves monitoring the running application, application operating environment

and planning the changes that need to be made to the running application.

Evolution management includes mechanisms for runtime software adaptation

through software architectures as described in (Oreizy, Medvidovic et al. 1998).

The approach sketches a basic framework for runtime software self-adaptation at

software architectural-level. However, it does not provide details on specifying

adaptation concerns and modifying them dynamically.

(Dashofy, Hoek et al. 2002) present an approach to self-healing software

using software architectures. The software architecture is specified in xADL

(Dashofy, Hoek et al. 2002) that is an extensible architectural description

language defined as a set of XML schemas. The detailed information about

xADL is available at http://isr.uci.edu/projects/xarchuci. The application is

initialized by loading software components and interconnecting them based on

its architectural description. The application is monitored for any faults and

repaired while executing. Application repair, which is an architectural difference

between initial architecture and architecture after repair, is represented as xADL

schema. The repair is also called “diff” and is applied to the application to

repairing it. This approach focuses more on system repair based on software

architecture than addressing adaptation concerns (adaptation policies).

PBAAM (Georgas and Taylor 2008, Georgas and Taylor 2009) is a

policy-based approach to architectural adaptation management in robotics

domain. The adaptive behaviour (capturing what actions to perform in response

to events indicating them) is decoupled from software and is expressed as

condition-action rules. Third party system called Java Expert System Shell

(JESS) (Hill 2003) has been used for expression and management of rules. The

rules are specified in xADL (Dashofy, Hoek et al. 2005) and consist of

observations and responses. The observations represent system information while

http://isr.uci.edu/projects/xarchuci

12

responses indicate system modifications. As adaptive behavior is specified in

xADL, which is based on XML schema, it requires a lot of code to specify

polices, hence polices are difficult to read and debug. Also the approach does not

consider adaption in response to contexts external to the application.

Rainbow (Garlan, Cheng et al. 2004) is a framework, which provides a

reusable infrastructure to support self-adaptation using software architectures. It

uses architectural model of the application to reason about and make

modifications in the running application. The model captures constraints placed

on the application, and upon constraint violations, adaptation strategies are

invoked to adapt the running application. A constraint may require that a

response time to a client’s request shall always be less than some threshold. A

repair strategy may be applied to adapt the application, if the response time

increases from threshold. The infrastructure requires the developers to write

adaption operators that the system invokes at runtime to adapt the application.

The developers then write adaption strategies which encapsulate system

properties, their constraints and adaption operators when constraints are violated.

As it requires pre-defining all adaption operators, unplanned adaptations cannot

be dealt with using Rainbow, which constraints dynamic modifiability of

adaptation strategies.

ACCADA (Gui, Florio et al. 2011) framework supports runtime

component composition. The framework consists of five modules, Event

Monitor, Structural Modeler, Context-specific Modeler, Context Reasoner and

Adaptation Actuator. Event Monitor observes properties of the running system.

Structural Modeler deals with knowledge about functional constraints and

Context-specific Modeler deals with knowledge about context specific

constraints (adaptation concerns). Context Reasoner selects the matching

Context-specific Modeler based on current context. Adaptation Actuator carries

out system adaptation. The adaptation process involves verification of structural

violations of all the installed components in the system and context-specific

violations and taking the adaptation actions to correcting the system. Adaptation

action taken may trigger another round of adaptation process and so on. This

design feature degrades system performance as number of components increase.

13

Also the adaptation concerns are not expressed at declarative level rather

specified by writing code for Context-specific modelers. Transformer (Gui, De

Florio et al. 2013) framework is very similar to ACCADA framework.

In summary, existing architectural adaptation approaches have received

more focus on architectural reconfiguration (i.e. specific methods, technologies,

tool support, etc.), while a little attention has been paid on another important

facet of context-aware adaptation (i.e. adaptation policies). The support in

existing architecture-based approaches is limited in that the adaptation concerns

are tightly bound to application code, if not tightly bound, the adaptation

concerns cannot be modified dynamically. We address these limitations in

existing approaches based on software architectures and present a policy-based

context-aware adaptation approach based on software architectures targeting

pervasive computing environments.

2.6 SUMMARY

Various researchers have provided the definition of context but a broader

definition of context has been given by Dey and so we have adopted his

definition. In this chapter we have elaborated the adaptation process having three

phases (1) Context monitoring and processing, (2) Adaptation policies and (3)

Adaptation acting. We then discussed the two adaptation types: parameter

adaptation and compositional adaptation. Parameter adaption involves fine

tuning the application by modifying its parameters. Compositional adaptation

involves reconfiguring the structural parts of the application and allows adopting

new strategies and algorithms to unforeseen during design time. This chapter

also explored various approaches to achieving compositional adaptation such as

programming language based, middleware-based and software architecture

based. This chapter also discussed the strengths of software architecture-based

approaches as they externalize the adaptation mechanisms from application code

and operate at higher level of abstraction. Finally the chapter provided

discussion on state-of-the-art architectural adaptation approaches. In summary,

we build our policy based approach on software architectural adaptation to

develop and execute adaptive context-aware applications.

14

PCAA INFRASTRUCTURE

In this chapter, we present the details of the proposed approach. First, we discuss

the design goals and the main design elements of the Policy-based Context-aware

Architectural Adaptation (PCAA) infrastructure. We then describe the working

of PCAA infrastructure and finally discuss the capabilities and limitations of

PCAA infrastructure.

3.1 DESIGN GOALS OF PCAA INFRASTRUCTURE

The design of the PCAA infrastructure is characterized by making all the phases

(elements) in adaptation process separate and external to each other following

the software engineering’s separation of concerns principle. Application

development is software architecture based with support of dynamic

modification of adaptation policies.

3.1.1 SEPARATION OF CONCERNS

We treat all the adaption concerns involved in adaptation process (i.e.

application being adapted, adaptation mechanisms and adaptation policies)

separately from each other.

In our approach to developing and executing adaptive context-aware

applications at software architectural level, an application is developed as a

composition of independent software components. Each software component

encapsulates a functional behaviour of an application and may require services of

other components to accomplish the task. A component does not contain any

code for adaptation concerns. An application is expressed at software

architectural level by writing configuration code. Application is initialized and

adapted by reusable reconfiguration management component. The adaptation

15

mechanism (software architectural reconfiguration) is a part of the reusable

reconfiguration management component. Adaptation concerns are addressed and

managed by policy system as adaptation policies. Adaptation policies are

separately specified and added to the application dynamically, which means

adaptation policies can be added to the application at runtime while it is running

without stopping and restarting it.

 This separation of concerns reduces complexity involved in development

of adaptive context-aware applications and lets the developers focus only on one

of these concerns at various levels of life cycle of an application. For example,

this helps developers focus on main aspects of application core business

concerns when developing application components while paying no attention on

adaptation concerns.

3.1.2 SOFTWARE ARCHITECTURE BASED ADAPTATION

The application development in our approach is based on software architecture.

The architecture of a software system represents the system as an organization of

computational elements (components) and their interconnection (connectors)

(Shaw and Garlan 1996, Garlan 2000). Traditionally, software architecture has

been described as box-and-line diagrams in which software architecture is

represented as a graph of interconnected nodes. The nodes represent

computational components (processing elements, data stores etc.) and the edges

(arcs) represent pathways of interaction between components (Garlan and

Schmerl 2002). The shortcomings in traditional box-and-line diagrams include

(1) the lines in between the nodes do not clearly show the type of interaction

between the node components and leaves the developer to her intuition to make

inference (2) when the system is implemented, it is difficult to tell that system

implementation truly conforms to its initial architecture. Software architecture

views software construction as configuration of components (encapsulating

system’s functionality) and connectors (regulating interactions among

components) (Taylor, Medvidovic et al. 2009). Describing system as a gross

organization of interacting components holds promise to ensure that system

satisfies the requirements in terms of performance, reliability, portability,

scalability, and interoperability (Garlan 2000). Software architectures can

16

provide a basis for runtime software adaptation by focusing, largely, on system

structure to reason about and make changes in the software (Oreizy, Medvidovic

et al. 1998, Oreizy and Taylor 1998). Also, adaptation support at software

architectural level offers great flexibility to reconfigure software systems as

components are arranged in a loosely coupled fashion which allows modifying

system structure by rearranging them (Dashofy, Hoek et al. 2002).

Similar to approaches based on middleware, adaptation approach based on

software architectures also separates and makes adaptation support external to

the application code. In software architectural adaptation approaches, software

architecture of the running application is used to adapt the executing application

dynamically. The description of software architecture the application is kept

alongside the running application. The application is adapted dynamically by

manipulating software architecture (such as adding, removing or replacing

components in the architecture). The changes made in the architecture are then

reified in the running application. Besides the separation of adaptation support

from the application, the software architecture-centric adaptation approach works

at a greater detail abstraction, allowing the developer to view the software as a

set of interconnected components rather than a set of program statements. This

provides more abstraction by eliminating fine-grained details and focusing on

components, their interconnection and runtime change (Oreizy, Medvidovic et al.

1998). This suggests that architecture-based adaptation is more flexible and

provides abstraction to achieve the adaptation as performing architectural

actions, such as addition of new software components in the system to achieve

new application behavior, or replacement of components for modifying the

application behavior.

Since the approach is based on software architecture, developing

application requires assembling together coarse-grained software components

(computational components and connectors), resulting in reduced development

efforts.

17

3.1.3 DYNAMIC MODIFICATION OF ADAPTATION POLICIES

An adaptation policy encapsulates adaptation decision logic, i.e. containing

information as what adaptation actions to perform, when to apply the adaptation

actions to adapt the application and under what conditions to apply the actions.

Following separation of concerns principle, offers great flexibility in

dynamically modifying adaptation policies. Adaptation policies are managed by

policy system and it makes it possible to dynamically modify adaptation policies

such as to add a new policy, remove or modify an existing policy.

 Dynamic modification of adaptation policies is desirable for applications

running in pervasive computing environments since environmental conditions

(such as resource variability) and user preferences or needs may change over

time that require change in application behaviour at runtime. This also allows

adding new adaptation behaviors that were not predicted or foreseen at the time

of application development.

3.2 INTRODUCTION TO PCAA INFRASTRUCTURE

PCAA infrastructure is the development and execution infrastructure for

developing and executing architecture-based adaptive context-aware

applications. While developing these applications, the adaptation process

involved comprises three sub-phases. The first phase is monitoring contexts so

that contextual information is obtained and sent in the form of context events. In

second phase adaptation decisions (that is making decisions on when and how an

application is adapted) in response to changes in application contexts are

defined. Finally, in the third phase adaptation acting is done using an appropriate

adaptation mechanism by implementing adaptation decisions made in second

phase.

 In PCAA infrastructure, all these three sub-phases of adaptation process

are handled separately. Software components only encapsulate main business

logic and perform required functionality. They do not contain any code for

adaptation decision logic and code to obtain contextual information. By taking

adaptation decision logic out of the component boundary frees developers from

18

focusing on adaptation concerns and lets them concentrate only on core business

logic while writing software components. Application is described as initial

software architecture of the application by writing configuration code, which

specifies the components and connectors used in the application and their

bindings. Reusable reconfiguration management component is a sub-element of

PCAA infrastructure that deals with application execution and carries out

application adaptation. Application is initialized and loaded from the description

of its initial software architecture. When the application is loaded, reusable

reconfiguration management component also maintains an in-memory model of

software architecture of the application. It contains references to executing

components and always represents current architecture of the application. It

evolves over time whenever application is adapted in response to changing

contexts. Adaptation involves reconfiguring this model. The changes in model

are enacted in the running application.

Adaptation decision logic is defined as specification of high-level

declarative Event-Condition-Action (ECA) adaptation policies, which subscribe

to a specific context event or a set of context events and encapsulate

specifications for adaptation actions as architectural changes. When context

event occurs and the condition is true, an appropriate policy will be triggered and

executed. This will cause reusable reconfiguration management component to

make an architectural change in in-memory architectural model, which is then

enacted in the running system. The ECA policies are external to application and

are separately specified (independently of configuration code of the application),

and independently and dynamically managed (added to and removed from the

system dynamically at any time throughout the life cycle of application). This

provides a clean separation of concerns between adaptation policies and other

aspects of architecture-centric adaptation (i.e. adaptation mechanisms, adaptation

policies and application being adapted are all separate and external to each

other). This separation of concerns reduces complexity involved in application

development and supports dynamic programmability of applications. Dynamic

modifiability of adaptation policies is an important feature, which is needed to

meet the dynamic nature of pervasive computing environments.

19

In summary, the steps involved in application initialization and adaptation

in PCAA infrastructure are following:

Application initialization

1. Application is initialized and loaded from description of its initial

software architecture.

2. In-memory model of the software architecture of the application is

maintained.

Application adaptation

1. Contextual information, in the form of high level context events, is

sent from Context Simulators.

2. Context event(s) trigger adaptation policies that have subscribed to the

event(s).

3. Adaptation actions of the triggered policies will be executed if the

conditions are met. These actions are, in fact, architectural actions

which are sent to reusable reconfiguration management component.

4. The reusable reconfiguration management component invokes the

architectural actions which make changes in in-memory model of the

software architecture. The changes in in-memory model are also

reified into the running application that changes behaviour of the

application. This is how the application is adapted in response to

change in application contexts.

The steps for application initialization and adaptation are also shown as a

sequence diagram in upper and lower halves in Figure 3.1 respectively.

20

Reusable reconfiguration

infrastructure
Context simulator Adaptation policy

In-memory architectural

model
Application

Model created and application initialized

Initialize applicationCreate model and initialize application

Send context event

Change in-memory model and adapt application

Change model and adapt application Adapt application

Application adapted

1 2

1

2

3 4

Figure 3.1 Working mechanism of the PCAA infrastructure

3.3 MAIN ELEMENTS OF PCAA INFRASTRUCTURE

The design of PCAA infrastructure is modular in which each phase of adaptation

process is handled as a separate entity and external to others. As stated earlier,

the infrastructure comprises three distinct elements and each element is

responsible for a particular task. The high level architecture of the PCCA

infrastructure is depicted in Figure 3.2.

21

Reusable reconfiguration management component

Parser

Configurator

Remote listener

In-memory

Architectural

model

Initial

Software

Architecture

Description

Running Application
C

o
n

te
x

t m
o

n
ito

rin
g

 se
rv

ic
e

R
e
u

sa
b

le
 P

o
lic

y
 S

y
ste

m

C
a
c
h

e
 M

a
n

a
g

e
r

Figure 3.2 High level architecture of PCAA infrastructure

3.3.1 REUSABLE RECONFIGURATION MANAGEMENT COMPONENT

The reusable reconfiguration management component is a main element of the

PCAA infrastructure, which encapsulates adaptation mechanisms. It is

responsible for two things: (1) initialization of the application from its initial

architecture (configuration) and (2) carrying out of application adaptation to

modify the application behaviour at runtime.

 Application development in PCAA infrastructure is a process of

specifying initial software architecture (configuration) of the application using

high-level declarative notations. Reusable reconfiguration management

component initializes the application from this initial software architecture

description by loading software components in the memory and interconnecting

them as specified in the initial description. In addition, the reusable

reconfiguration management component also maintains an in-memory model of

the software architecture of the application which is causally connected to

application implementation units. This in-memory model always represents the

current architecture of the application and may differ from initial application

22

architecture during the course of application execution as the application is

adapted.

 There are three ways by which an application can be adapted: (1) Adding

entirely new software component in the application that encapsulates different

strategies / algorithms that provide the behaviour required in response to the

changing contexts, (2) Removing existing components whose functionality is not

required any more or (3) Replacing existing software components with new ones

which implement the desired application behaviour. The reusable reconfiguration

management component encapsulates this adaptation mechanism and carries out

application adaptation by altering the in-memory model of the software

architecture of the application through these architectural actions i -e adding new

components, removing or replacing existing components. Any changes in the in-

memory model are also reflected in the running application thereby achieving

new application behaviour. The reusable reconfiguration management component

receives adaptation actions in the form of architectural actions from policy

system that result when a particular policy is triggered in response to the context

changes (context events).

3.3.2 POLICY SYSTEM

The policy system provides the support for specification and dynamic

management of adaptation policies. Adaptation policies are high level Event-

Condition-Action (ECA) rules for adaptation decisions. An adaptation policy is

an independent unit of execution and comprises three parts: (1) subscription to

event or set of events, (2) a condition or set of conditions and (3) an action or set

of actions. An event is contextual information that is sent from context simulator

widgets, a condition is a check point to make sure that an action can be taken and

the action part involves architectural actions to modify the in-memory software

architectural model of the application to achieve new application behaviour.

As adaptation policies are independent units of execution, these may be

added to, removed from or replaced at any point during the course of the

application execution. This allows to dynamically changing the adaptation logic

23

at any point during application execution in order to specify new adaptation

concerns without taking the application offline.

3.3.3 CONTEXT SIMULATOR WIDGETS

As the primary focus of our research is providing a flexible support for

adaptation concerns and software architecture based adaptation, we do not

address the issues related to obtaining context from real sensors. We, therefore,

have implemented context simulator widgets that send contextual information to

the policy system.

3.4 WORKING OF PCAA INFRASTRUCTURE

PCAA infrastructure has three sub-components (elements), each of which runs

independently. Reusable reconfiguration management component provides the

support for specification of an initial architecture of an application and its

execution, and runtime support for architectural adaptation. It takes the initial

architecture specification (configuration) as an input, reads and parses it, loads

the components, interconnects them and initializes the application

implementation. It also builds an in-memory model of the software architecture

of the application which is connected to the application implementation units.

The policies are specified and stored in files that the policy system reads,

parses and loads them as separate units of execution. When context simulator

widget generates and sends a context event, it is sent to policy system which

triggers all policies that have subscribed to the context event. When a policy is

triggered, the specified conditions are checked and if conditions are true , its

action part is executed. An action part of the policy contains adaptation messages

(expressed as architectural commands) which are sent to reconfiguration

management component. The reconfiguration management component applies

the architectural commands to the in-memory software architectural model of the

application to achieve new architecture of the application. The corresponding

changes in the architectural model are also reflected in the running application.

This results in application being adapted to meet the requirements of current

contexts.

24

3.5 CAPABILITIES AND LIMITATIONS OF PCAA INFRASTRUCTURE

3.5.1 CAPABILITIES

 One of the strengths of our PCAA infrastructure comes from the use of

software architecture as a basis of application adaptation. The benefits of

software architecture are twofold: (1) it provides a loosely coupled

structure, allowing the adaptation to be achieved by just rearranging its

structural parts and (2) it operates at high level of abstraction. Other

strength of our approach is reusability of architecture based adaptation

support (adaptation mechanism) as part of the infrastructure, which means

our architectural adaptation support can be used across various

applications.

 Another main strength of PCAA infrastructure is flexible support for

adaptation policies in that polices are separately specified (using high-

level declarative notations) from rest of application code, run

independently of application and are dynamically modifiable.

 Separation of concerns (i.e. application being adapted, adaptation

mechanisms and adaptation policies being treated separately of each

other) reduces complexity involved in application development and eases

the development process.

3.5.2 LIMITATIONS

 One limitation of PCAA is that currently all components to be used in

application must be written in JAVA language following PCAA

component model. Components written in any other language cannot be

used without having any wrapper components for them.

 In the current implementation, services a component, written following

PCAA component model, can provide are limited. A component can only

25

provide one required service to other components. However a component

can require (or use) services of other components as many as needed.

 Small configuration language developed is in its infancy. It supports a

limited number of architectural commands just to test the proposed

approach. The list of commands needs be expanded to include more

commands. The syntax and reference naming for components needs be

improved so that there is no naming conflict in policies.

3.6 SUMMARY

In this chapter, we have presented the details of the proposed policy based

approach to developing and executing the adaptive context-aware applications at

software architectural level. The goals of our research are to reduce complexity

involved in development process and providing support for dynamic

programmability of applications. We have provided design goals of PCAA

infrastructure, which are separation of concerns, software architecture based

adaptation and dynamic modification of adaptation policies. We have also

provided an overview of PCAA infrastructure, description of its main elements

and working of it. Finally, we have discussed its capabilities and limitations.

26

PROTOTYPE SYSTEM IMPLEMENTATION

In previous chapter, we presented the design goals of PCAA infrastructure,

description of its main design elements and explained its working along with

discussion on the capabilities and limitations of PCAA infrastructure.

The design of PCAA infrastructure is modular and has separate and

independent sub components. In this chapter, we discuss implementation details

of each of the elements with description of its functionality.

4.1 REUSABLE RECONFIGURATION MANAGEMENT COMPONENT

This component encapsulates adaptation mechanisms that provide the support for

application adaptation at architectural level. The reusable reconfiguration

management component has been implemented in JAVA programming language.

It has a simple GUI user interface and comprises several sub-components:

Parser, Configurator, Cache Manager and Remote Listener.

4.1.1 USER INTERFACE

A simple GUI based user interface is designed, which has four sections stacked

vertically (Figure 4.1). The top section has a check box labeled as “Enable Cache

Support”. When it is checked before the application has started, the cache

support is enabled to increase system performance. Next to checkbox is a text

box, which displays the path of the file containing description of initial software

architecture of the application. At last, the button labeled as “Select File and

Run” is used to browse the file containing description of initial software

architecture of the application stored on local disk. When a file is selected, the

application is initialized from this initial description. Next section has a text

pane with white background, which is used to capture and display the text from

27

standard output console. Third section has text pane with black background that

displays the messages for actions that the reconfiguration management

component performs. The bottom section comprises a text box and a button

labeled as “Modify architecture”. Writing architectural commands in text box

and then clicking the button (Modify architecture) will reconfigure the in-

memory architectural model, thereby adapting application. Through this

mechanism, we can check our architecture based adaptation support without

using policies.

Figure 4.1 The user interface of reconfiguration management component

4.1.2 PARSER

This component of reconfiguration management is responsible to check the

syntax of configuration (architectural) commands (Section 4.1.7) and produces a

list of commands that are executed by the Configurator component. At the time

of application initialization, when the file with specification of initial

architecture of the application written in our own configuration language is

28

selected, the Parser component reads the file from the disk, loads its contents and

goes through line by line of the specification file to check its syntax. If there is a

syntax error in an architectural command, the Parser stops and reports the error.

Once the file is completely checked against syntax errors, the Parser generates a

list of configuration commands. The Configurator component executes each

command in the list and builds an in-memory model of the software architecture

of the application.

The Parser also parses the commands received through Remote Listener

component. These commands are usually addition of new component in the

architecture or replacement of an existing component with another new

component with a similar interface.

4.1.3 CONFIGURATOR

The Configurator component is one of the core components of reconfiguration

management that loads components in memory, initializes them and binds them

together in order to initialize the application. It also builds an in-memory model

of the software architecture of the application that is causally connected to the

application implementation units.

The Configurator has two main roles. First, at application startup when

Parser component gives it a list of configuration commands, it executes those

commands. The commands are, in fact, software architectural commands listed

and described in (Section 4.1.7). For add commands, the Configurator loads the

classes in memory and instantiates the objects. For bind command, the

Configurator binds the components together through connector by setting

appropriate references. For start command, the Configurator calls the “run()”

method of component and the component gains the execution control. While

initializing the application, the Configurator also creates the In-memory

architectural model of the application.

The second crucial role Configurator plays is carrying out application

adaptation. Application adaptation may involve loading new component in

memory and replacing the old one with new ones by rebinding. Application

29

adaptation is triggered when Remote Listener component receives adaptation

message (comprising architectural commands) which are meant to modify the in-

memory architectural model and thereby application implementation.

4.1.4 IN-MEMORY SOFTWARE ARCHITECTURAL MODEL

This in-memory model of the software architecture of the application, initialized

from the description of initial software architecture of the application, is stored

in memory. It always represents current architecture of the application and

contains references to application executing units. It evolves over time whenever

application is adapted in response to changing contexts. In our approach,

application adaptation is realized through this in-memory architectural model

which is causally connected to application implementation units. Application

adaptation is defined in terms of architectural manipulations (addition, removal

or replacement of components). Application adaptation is always an architectural

change for which in-memory architectural model is modified to reflect new

architecture of the application. Any changes in architectural model are also

reified in application implementation. This model is created and maintained by

Configurator component.

4.1.5 REMOTE LISTENER

The Remote Listener is actually a java RMI service which is exported by

reconfiguration management component so that policy system can interact with

it. It is a means to receive adaptation message in the form of architectural

commands from action part of the policy. When it receives the architectural

commands, it sends them to Parser. If Parser successfully parses the commands

then Remote Listener invokes Configurator component which executes the

commands to carry out application adaptation and the application is reconfigured

to meet the requirements of the current context.

4.1.6 CACHE MANAGER

As a result of application adaptation, new components may be added in the in-

memory architectural model and removed from it. When a component is

30

removed, its reference is also removed from the model and resultantly, the

component memory is reclaimed. When the same component needs to be added

into the application later on, it is reloaded in memory and used in the application.

Component reloading incurs cost in terms of time required to load the

component. When cache support is enabled in reconfiguration management

component, the component memory is not reclaimed and the component is

cached by Cache Manager.

 Cache Manager is used when caching support is enabled in

reconfiguration management. It is invoked when components are removed from

the in-memory model. It maintains references to the components removed from

in-memory model, so the components are not garbage collected. When a

component removed from the model is required in the application later on, its

reference is obtained from Cache Manager and the component is used in the

application without requiring reload. This is how cache improves performance of

the system.

4.1.7 CONFIGURATION LANGUAGE

The approach to application adaptation in PCAA infrastructure is software

architecture based, in which application composition and application adaptation

(reconfiguration) is achieved through the use of software architecture. Initial

application composition (specification) is expressed in a small configuration

language that we have developed as part of the infrastructure. Initial software

architecture of the application specifies the components and connectors used and

their interconnection. At application runtime when application is adapted, the

software architecture of the application is reconfigured to change the behaviour

of the application. The specification of adaptation message is also expressed in

the small configuration language.

The configuration language is a declarative language and has some basic

constructs as architectural commands. The list of commands is short just to meet

the requirements of the PCAA infrastructure. The basic commands are meant to

build and modify the software architecture of the application. Here is the

description of some of the commands:

31

4.1.7.1 ADD COMMAND

The add command is for addition of component or connector in the architecture.

This command is used to specify the initial architecture of the application and

also used at application runtime while application needs to be adapted. At

runtime application adaptation, add command dynamically adds the component

in architecture. The syntax of the command to add a component in the

architecture is shown in (Figure 4.2).

add component className as identifier

Figure 4.2 The syntax of add command for adding a component

In the above command “add”, “component” and “as” are keywords

whereas “className” is the fully qualified name of the JAVA class

encapsulating the implementation of component and “identifier” is the reference

name given to the component.

Similarly to add a connector in the architecture, the add command is used.

The syntax for the command is shown in (Figure 4.3) below.

add connector className as identifier

Figure 4.3 The syntax of add command for adding a connector

In the above command “add”, “connector” and “as” are keywords

whereas “className” is the fully qualified name of the JAVA class

encapsulating the implementation of connector and “identifier” is the reference

name given to the connector.

4.1.7.2 BIND COMMAND

The bind command is used to specify the interconnection of components. It binds

two components together through a connector. One component provides the

service that another component requires and connector is the mediator through

32

which component requiring the service uses the service that another component

provides. The syntax of the command is given in (Figure 4.4).

bind identifier1 at port1 to identifier2 at port2 using identifier3

Figure 4.4 The syntax of bind command

In the above command “bind”, “at”, “to” and “using” are keywords

whereas “identifier” is the reference name of the component or connector and

“portN” is name of the port where the service is required / provided. The

“identifier1” refers to the component that provides the service at “port1”,

“identifier2” refers to the component that requires the service at “port2” and

“identifier3” is the reference name of the connector mediating the

communication between component using the service and component providing

the service.

4.1.7.3 REPLACE COMMAND

The replace command is used for application adaptation where old components

or connectors need to be replaced with new components or connectors

respectively, to adapt the application to change its behaviour in response to

change in the context. The syntax of the command is given in (Figure 4.5).

replace component identifier1 with identifier2

Figure 4.5 The syntax of replace command

In the above command “replace”, “component” and “with” are keywords

whereas “identifier1” is reference name for the component that needs to be

replaced and “identifier2” refers to the new component replacing the old one.

4.1.7.4 START COMMAND

The start command starts execution of the application. Application startup takes

from the component that implements IRunner interface. The interface tags the

component as the entry point of the application. The syntax of the command is

shown in (Figure 4.6).

33

start identifier

Figure 4.6 The syntax of start command

In the above command “start”, is the keyword whereas “identifier” is a

reference name of the startup component.

4.2 POLICY SYSTEM

One of the core requirements of our proposed approach is a provision of flexible

support for an important facet of overall adaptation process, i.e. adaptation

policies. To realize this requirement, we have adopted a third party policy system

called Ponder2 (Twidle, Lupu et al. 2008, Twidle, Dulay et al. 2009). We choose

Ponder2, as it is a light-weight, self-contained and extensible policy system that

can be used across all devices from small resource-constrained devices to

complex environments. In addition, Ponder2 uses a declarative language called

PonderTalk to specify polices, which provides better transparency to the

developers, as policies are specified at higher-level of abstractions (Dhomeja

2011).

4.2.1 PONDER2

Ponder2 is a light-weight policy system for specification and enforcement of

policies. Ponder2 supports both authorization and obligation policies (ECA

rules). We use Ponder2 ECA rules for adaptation policies, which are expressed in

PonderTalk language (a declarative language) provided by Ponder2 system. In

Ponder2 everything is implemented as managed object and controlled through

PonderTalk message keywords. A managed object is implemented in JAVA and

its methods are annotated like @Ponder2op ("reconfig:"). The annotations are

used for establishing link between JAVA method and PonderTalk message

keyword. Ponder2 software and its documentation are available at:

http://www.ponder2.net.

http://www.ponder2.net/

34

4.3 CONTEXT SIMULATOR WIDGETS

In current implementation of the PCAA infrastructure, there are no practical

mechanisms to interact with the sensors deployed in the environment to acquire

the contextual information. However, to serve the purpose of testing hypothetical

example scenarios to be run in PCAA infrastructure, we have designed several

simulators as the context widgets to provide the contextual information for the

applications. The use of simulated context monitors, contrary to practical

integration with real sensors, has no effect on our research objectives, as the

primary focus of our research is providing a flexible support for adaptation

concerns and software architecture based adaptation.

The simulators are GUI components implemented as Ponder2 managed objects

and generate Ponder2 events to trigger Ponder2 actions. The Location Context

Widget and User Context Widget are shown below (Figures 4.7 and 4.8).

Figure 4.7 Location Context Widget

Figure 4.8 User Context Widget

35

4.4 COMPONENT MODEL IN PCAA INFRASTRUCTURE

Application in PCAA infrastructure is a composition of software components and

connectors. Software components encapsulate core business logic of the

application. Each component is in charge of a particular task in the application

and may provide service to other components and require services of other

components. Software connector mediates communication between components .

The components do not interact with each other directly, rather they

communicate through software connectors. A component exports its service

through provided interface and uses services of other components at required

interface. A component can require as many services as needed but can provide

only one service to other components. A connector binds two components

together. It has two interfaces, at one interface a component providing the

service is attached and at other interface, the component requiring the service is

attached. The connector can bind together only two components, one component

providing the service and other requiring the service. The communication

between components is achieved through method invocation via connector. Both

the component and connector are first class entities. We have provided a JAVA

API which includes basic interfaces and classes for implementing components

and connectors following PCAA infrastructure component model.

4.4.1 PCAA INFRASTRUCTURE COMPONENT MODEL API

We have provided an API for writing components and connectors following

PCAA infrastructure component model. The API comprises some basic

interfaces and classes which are written in JAVA.

4.4.1.1 COMPONENT INTERFACE AND CLASS

The “IComponent” interface (Appendix A, Section A.1) in package pcaapc.api is

the basic interface for component specification. The method “void initialize()”

is aimed for component initialization, once it is loaded. In this method,

component initialization tasks, such as establishing connections with database

server etc. are accomplished. A component can provide service to other

components that they require by implementing “Output doRequired(String port,

36

Input in)” method, where port is connection point and in is an object of type

Input used to pass data to the method. The method returns data through object of

type Output. Both Input and Output are interfaces for tagging purpose only.

Similarly, a component can use services of other components by implementing

the “void doProvided(String port)”. An object is bound to another component

through connector component. Connectors are attached to the component through

method “void setConnector(IConnector connector, String port)”, where

connector refers to Connector instance and port specifies connection point. A list

of all the attached connectors to the component can be accessed through method

“public Hashtable<String, IConnector> getConnectors()”. The API, however,

provides a “Component” class (Appendix A, Section A.2) in package pcaapc.api

that provides implementation of all the methods in “IComponent” interface. The

programmers can extend this class to define their own components.

4.4.1.2 CONNECTOR INTERFACE AND CLASS

The “IConnector” interface (Appendix A, Section A.3) in package pcaapc.api is

the basic interface for connector specification. A connector binds together two

components, one providing the service and the other requiring the service. The

component providing the service is attached through method “void

setProvided(IComponent provided)”, where provided refers to the Component

instance. Similarly, the component requiring the service is attached through

method “void setRequireded(IComponent required)”, where required refers to

the Component instance. The attached components, requiring and providing the

service can be accessed through “IComponent getRequired()” and “IComponent

getProvided()” methods respectively. The interface also declares two methods

“public Output doRequired(String port, Input in) and “void doProvided(String

port)” for delegating method invokes from one component to other component.

The API, however, provides a “Connector” class (Appendix A, Section A.4) in

package pcaapc.api that provides implementation of all the methods in

“IConnector” interface. The programmers should extend this class to define

their own connectors.

37

4.4.1.3 INPUT AND OUTPUT INTERFACES

These interfaces are used for just tagging purpose. If an object is to be passed to

method “Output doRequired(String port, Input in)”, it must implement “Input”

interface (Appendix A, Section A.5) to tag it to type “Input”. The method

returns objects which implement “Output” interface (see Appendix A, Section

A.6).

4.4.1.4 IRUNNER INTERFACE

The “IRunner” interface extends “Runnable” interface (Appendix A, Section

A.7). The component that must get control when an application is initialized, it

must implement the “IRunner” interface. The component provides

implementation of “run ()” method and controlling code is placed inside it.

4.5 SUMMARY

In this chapter we have provided implementation details of one of the core

components of PCAA infrastructure, reusable reconfiguration management

component, which performs two main tasks: application initialization and its

adaptation. The application is initialized from the description of its initial

architecture and an In-memory architectural model of the application is created.

The application is adapted by reconfiguring the In-memory architectural model

and the changes made in the model are enacted in the application. The adaptation

concerns are expressed as ECA adaptation polices specified separately from

application configuration code and added to the application once it is running.

The policies are dynamically modifiable. The chapter also provides details on

small configuration language, its basic constructs and syntax. Finally, the

description of PCAA infrastructure component model is presented, along with

discussion on API provided as part of the infrastructure.

38

EXAMPLE APPLICATIONS AND

EVALUATION

In this chapter we present the description, design, development and execution of

some hypothetical adaptive context-aware applications using PCAA

infrastructure. Finally, we evaluate the performance of the system and dynamic

modifiability of adaptation policies.

5.1 LOCATION BASED MESSAGE DELIVERY

Location based message delivery (LBMD) is the application in which the

messages for a user from remote source are presented to the user through the

nearest device available to the user. For example the user may prefer to receive

the messages on smart TV, if she is watching TV in the TV hall and may be

interested to receive the messages on the smart phone when in the bedroom.

The application is composed of three software components (Figure 5.1).

The MessageReceiver component receives messages from remote sources; it has

only one provided interface where it provides the messages received from remote

source. The code for the component is presented in (Appendix B, Section B.1.2).

The MessageForwarder component (Appendix B, Section B.1.1) reads messages

from MessageReceiver component and sends to the bound device for display. It

has two required interfaces. On one required interface, it reads messages through

provided interface of MessageReceiver component. On other required interface,

it forwards the messages through provided interface of SmartTV or SmartPhone.

The third component is the device component. In the demonstration application,

we implement only two components SmartTV (Appendix B, Section B.1.4) and

SmartPhone (Appendix B, Section B.1.3). The SmartTV or SmartPhone

39

components imitate display devices and show the messages. They have only one

provided interface for displaying the data.

SmartTV MessageForwarder MessageReceiver

Figure 5.1 High level diagram of LBMD application

The initial software architecture of the application expressed in the small

configuration language is given below (Figure 5.2).

1. add component pcaa_app3.SmartTV as tv

2. add component pcaa_app3.MessageForwarder as msgF

3. add component pcaa_app3.MessageReceiver as msgR

4. add connector pcaa_app3.Connector as con_r

5. add connector pcaa_app2.Connector as con_dvc

6. bind tv at mf to msgF at mf using con_dvc

7. bind msgR at mr to msgF at mr using con_r

8. start msgF

Figure 5.2 Initial software architecture of the LBMD application

 To demonstrate the runtime change in the behaviour of Location based

message delivery application, we consider two possibilities. If the user is in TV

hall watching television then the messages are delivered to and displayed at

Smart TV. If the user is in bedroom then the messages are forwarded and

displayed at Smart Phone.

40

We write two policies, one for the TV hall and the other for Bedroom.

Both policies subscribe to user location event. In a policy for a TV hall , we

specify that if the location of the user is TV hall then Display Device component

is replaced with SmartTV component. TV hall policy (Figure 5.3) subscribes to

user location context event (line 2), when user location context event occurs and

the location is “TV Hall” (line 3), action part of the policy is performed. The

action part includes sending reconfiguration message (lines 4, 5 and 6) to

reusable reconfiguration management component, which eventually adapts the

application. In a policy for bedroom, if the user is in bedroom then display

device component is replaced with SmartPhone component (Figure 5.4). First the

SmartPhone component is added to the system and then SmartTV component is

replaced with SmartPhone component. The reconfiguration process is shown in

(Figure 5.5). When the location event occurs and if the user location is TV hall,

all the messages are forwarded and displayed on smart TV. If the location is

bedroom then messages are forwarded and displayed on smart phone.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/locationevent;

3. condition: [:type :value | value == “TV Hall”];

4. action: [:type :value |

5. config reconfig: “add component pcaa_app3.SmartTV as tv;

6 replace component sp with tv”.

7. active: true.

Figure 5.3 TV policy specification

41

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/locationevent;

3. condition: [:type :value | value == “Bedroom”];

4. action: [:type :value |

5. config reconfig: “add component pcaa_app3.SmartPhone as sp;

6. replace component tv with sp”.

7. active: true.

Figure 5.4 Bedroom policy specification

MessageForwarder MessageReceiver

SmartPhone

SmartTV
re

m
ove

d

added

C
o

m
p

o
n

e
n

t
re

p
la

ce
m

e
n

t

Figure 5.5 Adaptation in LBMD application as replacement of components

42

5.2 SMART NOTICE BOARD

In this example scenario, we present an automated smart version of a traditional

notice board. In an academic institution, a traditional notice board is a means

where up-to-date academic information relating to students or teachers is

available. Teachers or students locate and read the information relevant to them.

 On the contrary, a Smart Notice Board (SNB) is a hypothetical

application in which the notice board is smart enough that it provides the

information relevant to the person who is in front of the notice board. If a teacher

is in front of the board, information relating to the teacher is displayed or if a

student is there, student related information is presented. It is also capable of

presenting information in different views. Some people may prefer the

information to be displayed in tabular form while the others might be interested

in seeing the charts, or graphical view.

 The application is composed of three software components. The Data

component (either StudentData or TeacherData) provides information related to

teachers or students. It may be noted that there can be as many Data components

as needed such as HoDData (for Head of Department data), but we currently

implement and discuss only two components viz TeacherData (Appendix B,

Section B.2.3) and StudentData (Appendix B, Section B.2.2) to simplify the

application. Data component has only one provided interface where it exports the

data. The View component renders the data into particular form, it has one

required interface where it requires the data through provided interface of the

Data component and one provided interface where it exports formatted data

(rendered in a particular form such as charts etc.) to be displayed by

SmartNoticeBoard component. The code for the component is presented in

(Appendix B, Section B.2.1). The SmartNoticeBoard is the component that

displays the data rendered in particular view. It has one required interface where

it requires the data rendered in particular view through provided interface of

View component and one provided interface where it provides the data for

display (Figure 5.6). The View component formats the data into particular view.

The implementation code for two View components is presented in (Appendix B,

Sections B.2.4 and B.2.5).

43

StudentData View1 SmartNoticeBoard

Figure 5.6 High level diagram of smart notice board application

The initial software architecture of the application coded with smal l

configuration language is given below (Figure 5.7).

1. add component pcaa_app2.SmartNoticeBoard as nb

2. add component pcaa_app2.View1 as v1

3. add component pcaa_app2.StudentData as st

4. add connector pcaa_app2.Connector as con_d

5. add connector pcaa_app2.Connector as con_v

6. bind st at dp to v1 at dp using con_d

7. bind v1 at vp to nb at vp using con_v

8. start nb

Figure 5.7 Initial software architecture of the SNB application

 To demonstrate the runtime change in the behaviour of Smart Notice

Board application, we consider two possibilities. If the person standing in front

of the notice board is a teacher then the smart notice board displays data relevant

to the teacher. In second case, if the person standing in front of the notice board

is a student then the notice board displays the data relevant to the student.

44

There are two policies involved in the scenario, one for the teacher and

the other for student. Both policies subscribe to a user presence event. In a policy

for a teacher, we specify that if the user is teacher, then Data component is

replaced with TeacherData component (Figure 5.8). In a policy for student, if the

user standing before smart notice board is a student, then Data component is

replaced with StudentData component (Figure 5.9). When the user presence

event occurs and if the user is a teacher, the TeacherData component is added in

the system and StudentData component is replaced with TeacherData component

(Figure 5.10). This, in effect, changes the behaviour of the notice board, as now

the data relevant to the teacher is displayed. On the other hand, if the user is

student then Data component is replaced with StudentData component. This

results in the notice board presenting information concerning the student.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/userpresenceevent;

3. condition: [:type :value | value == “teacher”];

4. action: [:type :value |

5. config reconfig: “add component pcaa_app2.TeacherData as teach;

6. replace component st with teach”.

7. active: true.

Figure 5.8 Teacher policy specification

45

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/userevent;

3. condition: [:type :value | value == “student”];

4. action: [:type :value |

5. config reconfig: “add component pcaa_app2.StudentData as st;

6. replace component teach with st”.

7. active: true.

Figure 5.9 Student policy specification

In the above code (Figure 5.8 and Figure 5.9), an ECA policy is created

which subscribes to user presence event. If the user presence event occurs, the

policy is triggered. If the user is a teacher, Data component is replaced with

TeacherData component and if the user is a student then Data component is

replaced with StudentData. This is how the Smart Notice Board application is

adapted in response to change in its current context (user presence).

View1 SmartNoticeBoard

TeacherData

StudentData
re

m
ove

d

added

C
o

m
p

o
n

en
t

re
p

la
ce

m
en

t

Figure 5.10 Adaptation in SNB application as replacement of components

46

5.3 CONTEXT-AWARE COMPRESSION SERVER

In this example scenario, there is a server application that sends data to remote

clients using some compression technique. The main software components of the

server application include DataStore component (Appendix B, Section B.3.1),

Compressor component (Appendix B, Sections B.3.3 and B.3.4) and the Provider

component (Appendix B, Section B.3.2). The high-level diagram of the

application is shown in (Figure 5.11). The DataStore component represents the

source of data. It has only one provided interface where it provides the data. The

Compressor component provides the compression service, it has only one

provided interface where it exports compression service. The Provider

component is the main component whose task is reading data from DataStore and

compressing the data through Compressor and then sending the compressed data

to remote client. The Provider component has two required interfaces and one

provided interface. One required interface requires the service provided by the

DataStore component and the other required interface requires the service

provided by the Compressor component, whereas one provided interface

provides the compressed data to remote clients.

Compressor Provider DataStore

Figure 5.11 High level diagram of compression server application

The initial software architecture of the application, expressed in small

configuration language, is given below (Figure 5.12).

47

1. add component pcaa_app.Compressor as compR

2. add component pcaa_app.DataStore as dataR

3. add component pcaa_app.Provider as pro

4. add connector pcaa_app.Connector as con_dc

5. add connector pcaa_app.Connector as con_ds

6. bind compR at dc to pro at dc using con_dc

7. bind dataR at ds to pro at ds using con_ds

8. start pro

Figure 5.12 Initial software architecture of the server application

 To demonstrate the runtime change in the behaviour of server application,

we consider the possibility of the change in bandwidth. If the bandwidth falls

below some threshold, the server must increase compression ratio so as more

data can be sent in the packets to compensate the fall of bandwidth. We write a

policy where we specify that when the bandwidth falls below some threshold (for

instance, less than 100), the Compressor component is replaced with another

Compressor component providing more compression ratio. The policy is

subscribed to bandwidth event. When the bandwidth event occurs, the policy is

triggered and if the condition is true (bandwidth less than 100), the Compressor

component is replaced with another Compressor component. The policy

description is given below (Figure 5.13). Similarly, to decrease the

computational load on server, a Compressor component with less compression

ratio can be added when bandwidth exceeds the threshold (greater than 100). The

policy description is given in (Figure 5.14).

48

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/bandwidthevent;

3. condition: [:type :value | value < 100];

4. action: [:type :value |

5. config reconfig:”add component pcaa_app.ComplexCompressor as comp2;

6. replace component compR with comp2”.

7. active: true.

Figure 5.13 Policy specification for bandwidth less than 100

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/bandwidthevent;

3. condition: [:type :value | value > 100];

4. action: [:type :value |

5. config reconfig:”add component pcaa_app.Compressor as compR;

6. replace component comp2 with compR”.

7. active: true.

Figure 5.14 Policy specification for bandwidth greater than 100

 In the (Figure 5.13), a policy is created that subscribes to bandwidth

event. If the bandwidth event occurs, the policy is triggered and if the bandwidth

is less than 100, the new Compressor component is added to the application that

49

is capable of having more compression ratio. The new component then replaces

the old Compressor component that is already in use (Figure 5.15). This is how

the server application is adapted in response to change in its current context (fall

in bandwidth).

ComplexCompressor

Compressor

Provider DataStore

re
m

ove
d

added

Co
m

po
ne

nt
 r

ep
la

ce
m

en
t

Figure 5.15 Adaptation in server application as replacement of components

5.4 EVALUATION

In this section, we evaluate our proposed system through performance analysis

and support for dynamic modifiability of adaptation concerns.

5.4.1 PERFORMANCE ANALYSIS

To study the performance of our system, we conduct tests by executing one of

the hypothetical applications (described in this chapter) and measuring total

adaptation time taken by our system. Total adaptation time is measured from a

point context is sent by the context simulator widget to the policy, which has

subscribed to it, until the application is adapted in response to policy evaluation.

This time () is a sum of time () taken by policy system (for policy

enforcement) and time () taken by reconfiguration management component

to adapt the application, which can be expressed as:

Figure 5.16 Equation for total adaptation time

50

The time () taken by reconfiguration management component for

application adaptation is a sum of time () in loading the new component in

memory and time () in reconfiguring the architecture.

Figure 5.17 Equation for reconfiguration time

Performance tests are conducted on a Windows platform (CPU Intel Core

i3-3120M 2.50 GHz, RAM 2GB, OS Windows 7 Ultimate 64-bit Service Pack 1,

Java version JDK1.7.0). All the infrastructural elements of the system run on a

single machine. To achieve a better measurement, the adaptation policy is

triggered thirty (30) times, which responds to user location context event.

The reported times, along with standard deviation and confidence

intervals, are presented in (Figures 5.18 to 5.23). The graph (Figure 5.18) shows

total adaptation time () along with time () for policy evaluation and

enforcement and application adaptation time (). The graph (Figure 5.19)

shows total adaptation time along with confidence intervals with different

confidence levels that the intervals contain true mean. In (Figure 5.20)

application adaptation time () which is sum of component load time ()

and architectural reconfiguration time () is shown. The policy time () is

independent of application whereas reconfiguration time () is variable from

component to component. For example replacing a component having more

bindings with other components may take more time, as it would require for the

new component to establish bindings with all components that the replaced

component is bound to. The pie chart (Figure 5.21) shows total adaptation time

() split into the percentage of times taken by each: policy enforcement (),

component loading () and architectural reconfiguration (). The pie chart

indicates that the largest contribution in overall adaptation time is provided by

component loading time (), while performance overhead of adaptation

policies () and architectural reconfiguration () is minimal. The graphs

(Figure 5.22 and Figure 5.23) show execution times when caching support is

enabled and indicates that caching support improves the performance by

51

avoiding component reloading (), thereby minimizing the total adaptation

time.

Figure 5.18 Graph showing total adaptation time () along with

standard deviation

Figure 5.19 Graph showing total adaptation time () along with

confidence intervals

0

2

4

6

8

10

12

14

16

18

tp tadp ttadp

T
im

e
in

 m
s

Adaptation times

0

2

4

6

8

10

12

14

16

tp tadp ttadp

Ti
m

e
 in

 m
s

Adaptation times

90% CI

95% CI

98% CI

52

Figure 5.20 Graph showing application adaptation time () along

with standard deviation

Figure 5.21 Pie chart showing percentage of different adaptation times

0

2

4

6

8

10

12

14

16

tload tr tadp

T
im

e
in

 m
s

Adaptation times

74%

21%

5%

tload tr tp

53

Figure 5.22 Graph showing total adaptation time () along with

standard deviation with cache enabled

Figure 5.23 Graph showing total adaptation time () along

with confidence intervals with cache enabled

The results in the form of graphs showing means of different execution times

along with standard deviation and confidence intervals are presented above. It is

evident from the results that the use of polices in our approach towards software

architecture based context-aware adaptation provides a greater flexibility in

terms of dynamic programmability of applications with a minimal performance

overhead.

-1

0

1

2

3

4

5

6

7

8

tp tadp ttadp

T
im

e
in

 m
s

Adaptation times

0

1

2

3

4

5

6

7

tp tadp ttadp

T
im

es
 i

n
 m

s

Adaptation times

90% CI

95% CI

98% CI

54

5.4.2 DYNAMIC MODIFIABILITY OF ADAPTATION POLICIES

In this section we evaluate the main feature of our research that our proposed

approach supports dynamic modifiability of adaptation policies. Through

Location Based Message Delivery application presented in (Section 5.1), we

show how policies are dynamically modified without taking the system offline.

The demonstration application has two adaptation policies: TV hall policy and

bedroom policy. We use bedroom policy and modify it to demonstrate dynamic

modifiability of this policy.

Let us assume the user preference has changed. She is interested to

receive messages into her email inbox instead of smart phone when she is in

bedroom. This requires modifying lines 5 and 6 of the bedroom policy shown in

(Figure 5.4) presented in (Section 5.1). The modified bedroom policy is shown in

(Figure 5.24).

Next step is to load the modified policy through Ponder2 shell without

shutting down and restarting the running application. Now in response to

location context event (location = “Bedroom”), messages are forwarded to Email

Inbox.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/locationevent;

3. condition: [:type :value | value == “Bedroom”];

4. action: [:type :value |

5. config reconfig: “add component pcaa_app3.EmailInbox as ei;

6. replace component tv with ei”.

7. active: true.

Figure 5.24 Modified bedroom policy specification

55

Above discussion demonstrates that our proposed approach supports dynamic

modification of adaptation concerns without shutting down and restarting the

system.

5.5 SUMMARY

In this chapter, we have presented description of several hypothetical

applications along with their design and implementation.

To substantiate our approach, we have conducted performance tests by

executing example application designed and developed in this chapter. The

results presented as graphs show that the largest contribution in overall

adaptation time is provided by component loading time, while performance

overhead of policies and architectural reconfiguration is minimal. Further

caching support improves the performance by minimizing the total adaptation

time. We have also demonstrated that our proposed approach supports dynamic

modification of adaptation concerns without shutting down and restarting the

system. We modified the adaptation policy and reloaded it without affecting the

application while it was executing.

56

CONCLUSION AND FUTURE WORK

This chapter concludes the thesis with discussion on the benefits of the proposed

approach and also provides the summary of contributions of the thesis. Finally, it

outlines direction for future work.

6.1 CONCLUSION

The primary goal of pervasive computing is to support user tasks, satisfy user

needs and enrich user experience with minimal or no user distraction. Context-

awareness in general and context-aware adaptation in particular is central to

achieving this goal. Context-aware adaptation is a process in which applications

acquire contextual information, reason upon it and adjust their behaviour

accordingly. The development of adaptive context-aware applications is a

challenging task and therefore various solutions have been proposed in the

literature with an aim to simplify the development efforts. These solutions are

provided in the form of programming languages, middleware and architecture

based solutions. Towards this goal, architecture based solutions are more flexible

in the sense that architecture of the application is a loosely coupled structure

(allowing structural parts to be rearranged and hence providing easy means to

achieve adaptation) and operate at higher level of abstraction. However, existing

architecture based adaptation approaches do not provide flexible solution to

another important facet of context-aware adaption process — adaptation policies.

The policies, in these approaches, are tightly coupled with application code and

dynamically un-modifiable. We have addressed this issue and provided a policy

and software architecture based solution following separation of concerns

principle in which all the concerns involved in adaptation process are separately

treated and managed. The application being adapted is specified and executed

separately from the adaptation policies. Adaptation policies are specified

57

separately and managed independently of other concerns. We have implemented

our approach and the outcome of this is design and implementation of PCAA

infrastructure. The infrastructure comprises three components: (1) Reusable

reconfiguration management component, (2) Policy system and (3) Context

simulator widgets. The reusable reconfiguration management component

initializes the application and performs runtime adaption. The policy system is

used for specification, enforcement and dynamic management of adaptation

policies. Context simulator widgets are used to generate and send context events

to the policy system. We have tested our system by developing and executing

some hypothetical applications. Moreover, we have evaluated performance of

our system and support for dynamic modifiability of adaptation policies. Results

show that the use of polices in our proposed approach provides a greater

flexibility (dynamic addition to and removal of adaptation policies from the

system) with a minimal performance overhead.

6.1.1 SUMMARY OF CONTRIBUTIONS OF THIS THESIS

A summary of the research contributions is given below:

 Software architectural adaptation support: This includes

implementation of reusable reconfiguration management component, which

provides runtime support for both application initialization from the

description of initial software architecture of the application and

architectural adaptation.

 Dynamic programmability of context-aware applications: Dynamic

programmability of applications, which is an essential requirement of the

pervasive computing environments, is provided with support of dynamic

modifiability of adaptation policies.

 Separation of concerns: Separating all the adaption concerns (i.e.

application being adapted, adaptation mechanisms and adaptation

policies) and making them external to each other provides ease of

development and reduces complexity involved in the development of

adaptive context-aware applications.

58

6.2 FUTURE WORK

The research work presented in this thesis has potential to be extended. In this

regard, we outline some of the future directions below:

 Currently PCAA infrastructure supports one adaptation mechanism,

compositional adaptation to adapt the application. Adaptation support

provided by our PCAA can be broadened by integrating another

adaptation mechanism, called parametric adaptation to fulfill adaptation

needs of the application.

 In the current PCAA infrastructure component model, a component can

provide only one service to other components, where as a component can

require more than one services of other components. PCAA infrastructure

component model should be refined to add support for a component to

provide more than one services to other components.

 The small configuration language can be extended. The language

currently supports only basic constructs for architectural actions. It

requires extending the small configuration language to add more

architectural commands.

 PCAA infrastructure currently provides context simulator widgets to send

context events to the policy system. It can be extended by adding support

for context monitoring service which will provide contextual information

with real sensors deployed in the environment.

 One inherent disadvantage of policies is policy conflicts. There needs to

be a provision for solution of policy conflicts.

59

REFERENCES

Abowd, G. D., A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles

(1999). Towards a Better Understanding of Context and Context-Awareness.

Proceedings of the 1st international symposium on Handheld and Ubiquitous

Computing. Karlsruhe, Germany, Springer-Verlag: 304-307.

Aksit, M. and Z. Choukair (2003). Dynamic, adaptive and reconfigurable

systems overview and prospective vision. Distributed Computing Systems

Workshops, 2003. Proceedings. 23rd International Conference on, IEEE.

Allen, R., R. Douence and D. Garlan (1998). Specifying and analyzing dynamic

software architectures. Fundamental Approaches to Software Engineering. E.

Astesiano, Springer Berlin Heidelberg. 1382: 21-37.

Appeltauer, M., R. Hirschfeld, M. Haupt, J. Lincke and M. Perscheid (2009). A

comparison of context-oriented programming languages. International Workshop

on Context-Oriented Programming, ACM.

Appeltauer, M., R. Hirschfeld, M. Haupt and H. Masuhara (2011). "ContextJ:

Context-oriented programming with Java." Information and Media Technologies

6(2): 399-419.

Appeltauer, M., R. Hirschfeld and T. Rho (2008). Dedicated programming

support for context-aware ubiquitous applications. Mobile Ubiquitous

Computing, Systems, Services and Technologies, 2008. UBICOMM'08. The

Second International Conference on, IEEE.

Baker, J. and W. Hsieh (2002). Runtime aspect weaving through

metaprogramming. Proceedings of the 1st international conference on Aspect -

oriented software development, ACM.

Brown, P. J., J. D. Bovey and C. Xian (1997). "Context-aware applications: from

the laboratory to the marketplace." Personal Communications, IEEE 4(5): 58-64.

60

Chalmers, D., N. Dulay and M. Sloman (2004). "A framework for contextual

mediation in mobile and ubiquitous computing applied to the context-aware

adaptation of maps." Personal Ubiquitous Comput. 8(1): 1-18.

Chen, G. and D. Kotz (2000). A survey of context-aware mobile computing

research, Technical Report TR2000-381, Dept. of Computer Science, Dartmouth

College.

Costanza, P. and R. Hirschfeld (2005). Language constructs for context -oriented

programming: an overview of ContextL. Proceedings of the 2005 symposium on

Dynamic languages. San Diego, California, ACM: 1-10.

Dashofy, E. M., A. v. d. Hoek and R. N. Taylor (2002). An infrastructure for the

rapid development of XML-based architecture description languages.

Proceedings of the 24th International Conference on Software Engineering.

Orlando, Florida, ACM: 266-276.

Dashofy, E. M., A. v. d. Hoek and R. N. Taylor (2002). Towards architecture-

based self-healing systems. Proceedings of the first workshop on Self-healing

systems. Charleston, South Carolina, ACM: 21-26.

Dashofy, E. M., A. v. d. Hoek and R. N. Taylor (2005). "A comprehensive

approach for the development of modular software architecture description

languages." ACM Transactions on Software Engineering and Methodology

(TOSEM) 14(2): 199-245.

David, P.-C. and T. Ledoux (2003). Towards a Framework for Self-adaptive

Component-Based Applications. Distributed Applications and Interoperable

Systems. J.-B. Stefani, I. Demeure and D. Hagimont, Springer Berlin Heidelberg.

2893: 1-14.

de Oliveira Guimarães, J. (1998). Reflection for statically typed languages.

ECOOP’98—Object-Oriented Programming, Springer: 440-461.

Dhomeja, L. D. (2011). Supporting policy-based contextual reconfiguration and

adaptation in ubiquitous computing, PhD Thesis, University of Sussex.

61

Floch, J., C. Frà, R. Fricke, K. Geihs, M. Wagner, J. Lorenzo, E. Soladana, S.

Mehlhase, N. Paspallis and H. Rahnama (2013). "Playing MUSIC—building

context‐aware and self‐adaptive mobile applications." Software: Practice and

Experience 43(3): 359-388.

Fox, J. and S. Clarke (2009). Exploring approaches to dynamic adaptation.

Proceedings of the 3rd International DiscCoTec Workshop on Middleware-

Application Interaction. Lisbon, Portugal, ACM: 19-24.

Garlan, D. (2000). Software architecture: a roadmap. Proceedings of the

Conference on The Future of Software Engineering. Limerick, Ireland, ACM:

91-101.

Garlan, D., S.-W. Cheng, A.-C. Huang, B. Schmerl and P. Steenkiste (2004).

"Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure."

Computer 37(10): 46-54.

Garlan, D. and B. Schmerl (2002). Model-based adaptation for self-healing

systems. Proceedings of the first workshop on Self-healing systems. Charleston,

South Carolina, ACM: 27-32.

Georgas, J. C. and R. N. Taylor (2008). Policy-based self-adaptive architectures:

a feasibility study in the robotics domain. Proceedings of the 2008 international

workshop on Software engineering for adaptive and self-managing systems.

Leipzig, Germany, ACM: 105-112.

Georgas, J. C. and R. N. Taylor (2009). Policy-based architectural adaptation

management: Robotics domain case studies. Software Engineering for Self -

Adaptive Systems, Springer: 89-108.

Gjørven, E., F. Eliassen, K. Lund, V. S. W. Eide and R. Staehli (2006). Self-

adaptive systems: A middleware managed approach. Self-Managed Networks,

Systems, and Services, Springer: 15-27.

Gui, N., V. De Florio and T. Holvoet (2013). "Transformer: an adaptation

framework supporting contextual adaptation behavior composition." Software:

Practice and Experience 43(8): 937-967.

62

Gui, N., V. D. Florio, H. Sun and C. Blondia (2011). "Toward architecture-based

context-aware deployment and adaptation." J. Syst. Softw. 84(2): 185-197.

Hallsteinsen, S., J. Floch and E. Stav (2005). A middleware centric approach to

building self-adapting systems. Software Engineering and Middleware, Springer:

107-122.

Hill, E. F. (2003). Jess in Action: Rule-Based Systems in Java Manning

Publications Co, Greenwich, C, USA.

Hirschfeld, R., P. Costanza and M. Haupt (2008). An Introduction to Context-

Oriented Programming with ContextS. Generative and Transformational

Techniques in Software Engineering II. L. Ralf, mmel, V. Joost, Jo and S. o,

Springer-Verlag: 396-407.

Inverardi, P. and A. L. Wolf (1995). "Formal specification and analysis of

software architectures using the chemical abstract machine model." Software

Engineering, IEEE Transactions on 21(4): 373-386.

Kasten, E. P., P. K. McKinley, S. Sadjadi and R. Stirewalt (2002). Separating

introspection and intercession to support metamorphic distributed systems.

Distributed Computing Systems Workshops, 2002. Proceedings. 22nd

International Conference on, IEEE.

Le Métayer, D. (1998). "Describing software architecture styles using graph

grammars." Software Engineering, IEEE Transactions on 24(7): 521-533.

Löwis, M. v., M. Denker and O. Nierstrasz (2007). Context-oriented

programming: beyond layers. Proceedings of the 2007 international conference

on Dynamic languages: in conjunction with the 15th International Smalltalk Joint

Conference 2007. Lugano, Switzerland, ACM: 143-156.

Luckham, D. C. and J. Vera (1995). "An event-based architecture definition

language." Software Engineering, IEEE Transactions on 21(9): 717-734.

Magee, J. and J. Kramer (1996). "Dynamic structure in software architectures."

SIGSOFT Softw. Eng. Notes 21(6): 3-14.

63

McKinley, P. K., S. M. Sadjadi, E. P. Kasten and B. H. Cheng (2004). "A

taxonomy of compositional adaptation." Rapport Technique numéroMSU-CSE-

04-17, juillet.

Mukhija, A. (2007). CASA A Framework for Dynamic Adaptive Applications,

PhD thesis, University of Zurich, Switzerland.

Oreizy, P., M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N.

Medvidovic, A. Quilici, D. S. Rosenblum and A. L. Wolf (1999). "An

Architecture-Based Approach to Self-Adaptive Software." IEEE Intelligent

Systems 14(3): 54-62.

Oreizy, P., N. Medvidovic and R. N. Taylor (1998). Architecture-based runtime

software evolution. Proceedings of the 20th international conference on Software

engineering. Kyoto, Japan, IEEE Computer Society: 177-186.

Oreizy, P., N. Medvidovic and R. N. Taylor (2008). Runtime software

adaptation: framework, approaches, and styles. Companion of the 30th

international conference on Software engineering, ACM.

Oreizy, P. and R. Taylor (1998). On the Role of Software Architectures in

Runtime System Reconfiguration. Proceedings of the International Conference

on Configurable Distributed Systems, IEEE Computer Society: 61.

Salber, D., A. K. Dey and G. D. Abowd (1999). The context toolkit: aiding the

development of context-enabled applications. Proceedings of the SIGCHI

conference on Human Factors in Computing Systems. Pittsburgh, Pennsylvania,

United States, ACM: 434-441.

Satyanarayanan, M. (2001). "Pervasive computing: vision and challenges."

Personal Communications, IEEE 8(4): 10-17.

Schilit, B., N. Adams and R. Want (1994). Context-Aware Computing

Applications. Proceedings of the 1994 First Workshop on Mobile Computing

Systems and Applications, IEEE Computer Society: 85-90.

64

Schmidt, G. (2008). "ContextR & ContextWiki, Master's thesis." Hasso-Plattner-

Institut, Potsdam.

Schubert, C. (2008). "ContextPy & PyDCL – Dynamic Contract Layers for

Python, Master's thesis." Hasso-Plattner-Institut, Potsdam.

Shaw, M. and D. Garlan (1996). "Software architecture: perspectives on an

emerging discipline."

Shaw, M. and D. Garlan (1996). Software architecture: perspectives on an

emerging discipline, Prentice Hall Englewood Cliffs.

Sousaand, J. and D. Garlan (2002). Aura: an Architectural Framework for User

Mobility in Ubiquitous Computing Environments. Proceedings of the IFIP 17th

World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on

Software Architecture: System Design, Development and Maintenance, Kluwer,

B.V.: 29-43.

Tatsubori, M., S. Chiba, M.-O. Killijian and K. Itano (2000). OpenJava: A Class-

Based Macro System for Java. Reflection and Software Engineering. W.

Cazzola, R. Stroud and F. Tisato, Springer Berlin Heidelberg. 1826: 117-133.

Taylor, R. N., N. Medvidovic, K. M. Anderson, J. E. James Whitehead and J. E.

Robbins (1995). A component- and message-based architectural style for GUI

software. Proceedings of the 17th international conference on Software

engineering. Seattle, Washington, United States, ACM: 295-304.

Taylor, R. N., N. Medvidovic and E. M. Dashofy (2009). Software Architecture:

Foundations, Theory, and Practice, Wiley Publishing.

Twidle, K., N. Dulay, E. Lupu and M. Sloman (2009). Ponder2: A policy system

for autonomous pervasive environments. Autonomic and Autonomous Systems,

2009. ICAS'09. Fifth International Conference on, IEEE.

Twidle, K., E. Lupu, N. Dulay and M. Sloman (2008). Ponder2-a policy

environment for autonomous pervasive systems. Policies for Distributed Systems

and Networks, 2008. POLICY 2008. IEEE Workshop on, IEEE.

65

Weiser, M. (September 1991). "The computer for the 21st century." Scientific

American. 265: 94-104.

66

PCAA INFRASTRUCTURE COMPONENT

MODEL API

A.1 COMPONENT INTERFACE

package pcaapc.api;

import java.util.Hashtable;

public interface IComponent {

 public void initialize();

 public Output doRequired(String port, Input in);

 public void doProvided(String port);

 public void setConnector(IConnector connector, String port);

 public Hashtable<String, IConnector> getConnectors();

}

 A.2 COMPONENT CLASS

package pcaapc.api;

import java.util.Hashtable;

public class Component implements IComponent {

 Hashtable<String, IConnector> connectors;

 public Component() {

67

 this.connectors = new java.util.Hashtable<String, IConnector>();

 }

 public void initialize() {

 }

 public Output doRequired(String port, Input in) {

 Output o;

 o = this.connectors.get(port).doRequired(port, in);

 return o;

 }

 public void doProvided(String port) {

 this.connectors.get(port).doProvided(port);

 }

 public void setConnector(IConnector connector, String port) {

 this.connectors.put(port, connector);

 }

 public Hashtable<String, IConnector> getConnectors() {

 return this.connectors;

 }

} // end class

A.3 CONNECTOR INTERFACE

package pcaapc.api;

68

public interface IConnector {

 public Output doRequired(String port, Input in);

 public void doProvided(String port);

 public void setRequired(IComponent required);

 public void setProvided(IComponent provided);

 public IComponent getRequired();

 public IComponent getProvided();

}

A.4 CONNECTOR CLASS

package pcaapc.api;

public class Connector implements IConnector {

 private IComponent required;

 private IComponent provided;

 public Connector() {

}

 public Output doRequired(String port, Input in) {

 Output o;

 o = this.required.doRequired(port, in);

 return o;

 }

 public void doProvided(String details) {

69

 this.provided.doProvided(details);

 }

 public void setRequired(IComponent required) {

 this.required = required;

 }

 public void setProvided(IComponent provided) {

 this.provided = provided;

 }

 public IComponent getRequired() {

 return this.required;

 }

 public IComponent getProvided() {

 return this.provided;

 }

} // end class

A.5 INPUT INTERFACE

package pcaapc.api;

public interface Input {

}

A.6 OUTPUT INTERFACE

package pcaapc.api;

70

public interface Output {

}

A.7 IRUNNER INTERFACE

public interface IRunner extends Runnable {

 //public void start();

}

71

CODE OF HYPOTHETICAL EXAMPLE

APPLICATIONS

B.1 LOCATION BASED MESSAGE DELIVERY APPLICATION

B.1.1 MESSAGEFORWARDER COMPONENT

package pc_app3;

import pcaapc.api.*;

public class MessageForwarder extends Component implements IRunner {

 public void doProvided(String details) {

 forwardMessage();

 }

 public void forwardMessage() {

 do {

// get messages from receiver

 Output o = doRequired("mr", new Input(){});

 Data d = (Data)o;

 DataIn di = new DataIn(d.getData());

 doRequired("mf", di); // Send to device for display

 delay();

72

 } while(true);

 }

 public void delay() {

 try {

 Thread.sleep(2000);

 }catch(Exception ex) {}

 }

 public void run() {

 doProvided("");

 }

}

B.1.2 MESSAGERECEIVER COMPONENT

package pc_app3;

import pcaapc.api.*;

public class MessageReceiver extends Component {

 private int i=1;

 // This method imitates data to be fetched from remote source

 public Data getData() {

 return new Data("Message "+i++);

 }

73

 public Output doRequired(String port, Input in) {

 return getData();

 }

}

B.1.3 SMARTPHONE COMPONENT

package pc_app3;

import java.awt.BorderLayout;

import java.awt.Font;

import pcaapc.api.Component;

import pcaapc.api.Input;

import pcaapc.api.Output;

import javax.swing.*;

public class SmartPhone extends Component {

 JFrame f = null;

 JLabel label = null;

 public SmartPhone() {

 f = new JFrame();

 f.setTitle("Smart Phone");

 this.label = new JLabel();

 this.label.setFont(new Font("Arial", 25, 25));

 f.getContentPane().add(BorderLayout.CENTER,this.label);

74

 f.pack();

 f.setSize(400, 200);

 f.setVisible(true);

 }

 private void display(Input in) {

 DataIn d = (DataIn)in;

 this.label.setText(d.getData());

 }

 public Output doRequired(String port, Input in) {

 display(in);

 return null;

 }

}

B.1.4 SMARTTV COMPONENT

package pc_app3;

import java.awt.BorderLayout;

import java.awt.Font;

import pcaapc.api.Component;

import pcaapc.api.Input;

import pcaapc.api.Output;

import javax.swing.*;

75

public class SmartTV extends Component {

 JFrame f = null;

 JLabel label = null;

 public SmartTV() {

 f = new JFrame();

 f.setTitle("Smart TV");

 this.label = new JLabel();

 this.label.setFont(new Font("Arial", 25, 25));

 f.getContentPane().add(BorderLayout.CENTER,this.label);

 f.pack();

 f.setSize(400, 200);

 f.setVisible(true);

 }

 private void display(Input in) {

 DataIn d = (DataIn)in;

 this.label.setText(d.getData());

 }

 public Output doRequired(String port, Input in) {

 display(in);

 return null;

 }

}

76

B.1.5 CONNECTOR

package pc_app3;

import pcaapc.api.Connector;

public class Conn extends Connector {

}

B.1.6 DATA CLASS

package pc_app3;

import pcaapc.api.Output;

public class Data implements Output {

 String s;

 Data(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

}

B.1.7 DATAIN CLASS

package pc_app3;

import pcaapc.api.Input;

77

public class DataIn implements Input {

 String s;

 DataIn(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

}

B.1.8 RENDEREDDATA CLASS

package pc_app3;

import pcaapc.api.Output;

public class RenderedData implements Output {

 String s;

 RenderedData(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

}

78

B.2 SMART NOTICE BOARD APPLICATION

B.2.1 SMARTNOTICEBOARD COMPONENT

package pc_app2;

import java.awt.BorderLayout;

import java.awt.Font;

import pcaapc.api.Component;

import pcaapc.api.IRunner;

import pcaapc.api.Input;

import pcaapc.api.Output;

import javax.swing.*;

public class SmartNoticeBoard extends Component implements IRunner {

 JFrame f = null;

 JLabel label = null;

 public SmartNoticeBoard() {

 f = new JFrame();

 f.setTitle("Smart Notice Board");

 this.label = new JLabel();

 this.label.setFont(new Font("Arial", 25, 25));

 f.getContentPane().add(BorderLayout.CENTER,this.label);

 f.pack();

 f.setSize(400, 200);

79

 f.setVisible(true);

 }

 private void display() {

 Output o = doRequired("vp", new Input(){});

 RenderedData d = (RenderedData)o;

 this.label.setText(d.getData());

 }

 public void doProvided(String details) {

 while(true) {

 display();

 try { Thread.sleep(1000);}catch(Exception e){}

 }

 }

 public void run() {

 doProvided("");

 }

}

B.2.2 STUDENT DATA COMPONENT

package pc_app2;

import pcaapc.api.*;

public class StudentData extends Component {

80

 public Data sendData() {

 int i = (int)(Math.random()*100);

 return new Data("Student Data " + i);

 }

 public Output doRequired(String port, Input in) {

 return sendData();

 }

}

B.2.3 TEACHERDATA COMPONENT

package pc_app2;

import pcaapc.api.*;

public class TeacherData extends Component {

 public Data sendData() {

 int i = (int)(Math.random()*100);

 return new Data("Teacher Data " + i);

 }

 public Output doRequired(String port, Input in) {

 return sendData();

 }

}

81

B.2.4 VIEW COMPONENT 1

package pc_app2;

import pcaapc.api.*;

public class View1 extends Component {

 public RenderedData renderData() {

 Output o = super.doRequired("dp", new Input(){});

 Data d = (Data)o;

 return new RenderedData("View 1 => (" + d.getData() + ")");

 }

 public Output doRequired(String port, Input in) {

 return renderData();

 }

}

B.2.5 VIEW COMPONENT 2

package pc_app2;

import pcaapc.api.*;

public class View2 extends Component {

 public RenderedData renderData() {

 Output o = super.doRequired("dp", new Input(){});

 Data d = (Data)o;

 return new RenderedData("View 2 => [" + d.getData() + "]");

 }

82

 public Output doRequired(String port, Input in) {

 return renderData();

 }

}

B.2.6 CONNECTOR

package pc_app2;

import pcaapc.api.Connector;

public class Conn extends Connector {

}

B.2.7 DATA CLASS

package pc_app2;

import pcaapc.api.Output;

public class Data implements Output {

 String s;

 Data(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

}

83

B.2.8 RENDEREDDATA CLASS

package pc_app2;

import pcaapc.api.Output;

public class RenderedData implements Output {

 String s;

 RenderedData(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

}

B.3 CONTEXT-AWARE COMPRESSION SERVER

B.3.1 DATASTORE COMPONENT

package pc_app;

import pcaapc.api.Component;

import pcaapc.api.Input;

import pcaapc.api.Output;

public class DataStore extends Component {

 private String data[] = {"Data1","Data2","Data3","Data4","Data5"};

 private int pointer = 0;

84

 private int limit = 5;

 public String getData() {

 if(pointer == limit)

 pointer = 0;

 return "DS-1["+data[pointer++]+"]";

 }

 public Output doRequired(String port, Input in) {

 DataOut d = new DataOut(getData());

 return d;

 }

}

B.3.2 PROVIDER COMPONENT

package pc_app;

import java.awt.BorderLayout;

import java.awt.Font;

import javax.swing.JFrame;

import javax.swing.JLabel;

import pcaapc.api.*;

public class Provider extends Component implements IRunner {

 JFrame f = null;

 JLabel label = null;

85

 public Provider() {

 f = new JFrame();

 f.setTitle("Server application");

 this.label = new JLabel();

 this.label.setFont(new Font("Arial", 25, 25));

 f.getContentPane().add(BorderLayout.CENTER,this.label);

 f.pack();

 f.setSize(1400, 200);

 f.setVisible(true);

 }

 public void process() {

 Output o = doRequired("ds", new Input(){});

 DataOut d = (DataOut) o;

 ForCompress fc = new ForCompress(d.getData());

 Output o2 = doRequired("dc", fc);

 Compressed c = (Compressed) o2;

 String data = c.getData();

 this.label.setText(data);

 //System.out.println(data);

 }

 public void provide() {

86

 while(true) {

 process();

 try { Thread.sleep(1000);}catch(Exception e){}

 }

 }

 public void doProvided(String details) {

 provide();

 }

 public void run() {

 doProvided("");

 }

}

B.3.3 COMPRESSOR COMPONENT 1

package pc_app;

import pcaapc.api.Component;

import pcaapc.api.Output;

import pcaapc.api.Input;

public class Compressor extends Component {

 public String compress(String data) {

return "Compressor 1 => Compressed "+data+" with compression

ratio 2 (20MB to 10MB)";

87

 }

 public Output doRequired(String port, Input in) {

 ForCompress fc = (ForCompress)in;

 String d = compress(fc.getData());

 return new Compressed(d);

 }

}

B.3.4 COMPRESSOR COMPONENT 2

package pc_app;

import pcaapc.api.Component;

import pcaapc.api.Output;

import pcaapc.api.Input;

public class Compressor2 extends Component {

 public String compress(String data) {

return "Compressor 2 => Compressed "+data+" with compression

ratio 5 (20MB to 4MB)";

 }

 public Output doRequired(String port, Input in) {

 ForCompress fc = (ForCompress)in;

 String d = compress(fc.getData());

 return new Compressed(d);

 }

88

}

B.3.5 CONNECTOR

package pc_app;

import pcaapc.api.Connector;

public class Conn extends Connector {

}

B.3.6 DATAOUT CLASS

package pc_app;

import pcaapc.api.Output;

public class DataOut implements Output {

 String s;

 DataOut(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

}

B.3.7 COMPRESSED CLASS

package pc_app;

import pcaapc.api.Output;

89

public class Compressed implements Output {

 String s;

 Compressed(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

} // end class

B.3.8 FORCOMPRESS CLASS

package pc_app;

import pcaapc.api.Input;

public class ForCompress implements Input {

 String s;

 ForCompress(String s) {

 this.s=s;

 }

 String getData() {

 return this.s;

 }

} // end class

	CERTIFICATE
	DEDICATION
	ACKNOWLEDGEMENTS
	DECLARATION
	CONTENTS
	LIST OF FIGURES
	GLOSSARY
	ABSTRACT
	INTRODUCTION
	1.1 Motivation
	1.4 Contributions of the thesis
	1.5 Structure of the thesis

	BACKGROUND AND RELATED WORK
	2.1 Definition of Context
	2.2 Adaptation process
	2.3 Adaptation Types
	2.4 Approaches to realizing compositional adaptation
	2.5 State-of-the-art
	2.6 Summary

	PCAA INFRASTRUCTURE
	3.1 Design goals of PCAA infrastructure
	3.1.1 Separation of concerns
	3.1.2 Software architecture based adaptation
	3.1.3 Dynamic modification of adaptation policies

	3.2 Introduction to PCAA infrastructure
	3.3 Main elements of PCAA infrastructure
	3.3.1 Reusable reconfiguration management component
	3.3.2 Policy system
	3.3.3 Context Simulator Widgets

	3.4 Working of PCAA infrastructure
	3.5 Capabilities and limitations of PCAA infrastructure
	3.5.1 Capabilities
	3.5.2 Limitations

	3.6 Summary

	PROTOTYPE SYSTEM IMPLEMENTATION
	4.1 Reusable reconfiguration management component
	4.1.1 User Interface
	4.1.2 Parser
	4.1.3 Configurator
	4.1.4 In-memory software architectural model
	4.1.5 Remote Listener
	4.1.6 Cache Manager
	4.1.7 Configuration Language
	4.1.7.1 Add command
	4.1.7.2 Bind command
	4.1.7.3 Replace command
	4.1.7.4 Start command

	4.2 Policy System
	4.2.1 Ponder2

	4.3 Context Simulator Widgets
	4.4 Component Model in PCAA Infrastructure
	4.4.1 PCAA infrastructure Component Model API
	4.4.1.1 Component interface and Class
	4.4.1.2 Connector Interface and Class
	4.4.1.3 Input and Output Interfaces
	4.4.1.4 IRunner Interface

	4.5 Summary

	EXAMPLE APPLICATIONS AND EVALUATION
	5.1 Location Based Message Delivery
	5.2 Smart Notice Board
	5.3 Context-aware Compression server
	5.4 Evaluation
	5.4.1 Performance Analysis
	5.4.2 Dynamic modifiability of adaptation policies

	5.5 Summary

	CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.1.1 Summary of contributions of this thesis

	6.2 Future work

	REFERENCES
	PCAA INFRASTRUCTURE COMPONENT MODEL API
	A.1 Component Interface
	A.2 Component Class
	A.3 Connector Interface
	A.4 Connector Class
	A.5 Input Interface
	A.6 Output Interface
	A.7 IRunner Interface

	CODE OF HYPOTHETICAL EXAMPLE APPLICATIONS
	B.1 Location Based Message Delivery Application
	B.1.1 MessageForwarder Component
	B.1.2 MessageReceiver Component
	B.1.3 SmartPhone Component
	B.1.4 SmartTV Component
	B.1.5 Connector
	B.1.6 Data Class
	B.1.7 DataIn Class
	B.1.8 RenderedData Class

	B.2 Smart Notice Board Application
	B.2.1 SmartNoticeBoard Component
	B.2.2 Student Data Component
	B.2.3 TeacherData Component
	B.2.4 View Component 1
	B.2.5 View Component 2
	B.2.6 Connector
	B.2.7 Data Class
	B.2.8 RenderedData Class

	B.3 Context-aware Compression Server
	B.3.1 DataStore Component
	B.3.2 Provider Component
	B.3.3 Compressor Component 1
	B.3.4 Compressor Component 2
	B.3.5 Connector
	B.3.6 DataOut Class
	B.3.7 Compressed Class
	B.3.8 ForCompress Class

