
On the Differences between Unit and Integration
Testing in the TravisTorrent Dataset

Gerardo Orellana
Dept. Computer Science
University of Antwerp

Antwerp, Belgium

Gulsher Laghari
Dept. Computer Science
University of Antwerp

Antwerp, Belgium

Alessandro Murgia
Dept. Computer Science
University of Antwerp

Antwerp, Belgium

Serge Demeyer
Dept. Computer Science
University of Antwerp

Antwerp, Belgium

Abstract—Already from the early days of testing, practitioners
distinguish between unit tests and integration tests as a strategy
to locate defects. Unfortunately, the mining software engineering
community rarely distinguishes between these two strategies,
mainly because it is not straightforward to separate them in
the code repositories under study. In this paper we exploited the
TravisTorrent dataset provided for the MSR 2017 mining chal-
lenge; separated unit tests from integration tests; and correlated
these against the workflow as recorded in the corresponding issue
reports. Further analysis confirmed that it is worthwhile to treat
unit tests and integration tests differently: we discovered that unit
tests cause more breaking builds, that fixing the defects exposed
by unit tests takes longer and implies more coordination between
team members.

Keywords—Software testing, Integration testing, Unit testing.

I. INTRODUCTION

Software testing is the activity of executing a program
with the intent of finding a defect. A software test brings
the component under test in a given state, then administers
a sequence of stimuli and subsequently verifies whether the
resulting state corresponds with the expected result. Once a
software test exposes a fault, a software engineer still has to
locate the root cause of the fault—the defect. To minimise
the search space, testing handbooks distinguish (among others)
between unit tests and integration tests [1]. A unit test isolates
the component under test (typically a class or a method) from
the rest of the system so that the tester can be confident that
the defect is located within the unit. An integration test, on
the other hand, exercises the interfaces between units; when
an integration test exposes a fault the defect should be in the
code that implements the protocol between the units.

Given that unit and integration tests represent different
strategies to pinpoint the location of a defect, one would
expect that software engineers take different actions when
confronted with a failing test. In particular, we assume that
unit tests expose more defects since they come earlier in
the testing cycle. Also, resolving a failing integration test
should take longer, since the search space for locating the
defect is larger. Similarly, resolving a failing integration test
should require more coordination between team members,
because more software engineers have been involved in the
implementation.

However, with the advent of continuous integration, the
software testing landscape changed drastically [2]. Given a
continuous integration setting, the sharp distinction between

unit tests and integration tests is disappearing; they are all
tests to support the team in writing code without worrying
about making unintended changes to the system [3].

The TravisTorrent dataset used for the MSR2017 mining
challenge posed an ideal testbed for verifying whether there
is indeed a difference between unit- and integration testing
in continuous integration setting. TravisTorrent is a freely
available dataset synthesised from the Travis Continuous In-
tegration Server and GitHub. Via this dataset, it is possible
to see which builds contained a defect, which tests have been
able to expose the defect, and inspect the actions the software
engineers took for repair. We selected 423 projects within the
complete dataset where we could distinguish between unit tests
and integration tests and where we could rely on information
available in JIRA or GitHub to calculate the time to fix. For
these projects we recovered those tests which exposed a defect,
classified those tests in either unit or integration tests, and
mined the issue tracker (JIRA or GitHub) and the version
control system (GitHub) to inspect the resolution actions.

Our work makes the following contributions:

1) We search 423 java projects in TravisTorrent dataset to
find the defects and categorise the failing tests into unit
tests and integration tests.

2) We analyse the defects exposed by unit tests versus
integration tests and discover that unit tests cause more
builds to fail.

3) We compare the time to fix the defects exposed by unit
tests against integration tests and discover that fixing
defects exposed by unit tests takes longer

4) We contrast the different actions software engineers take
when resolving failing unit tests versus integration tests
and discover that unit tests involves more coordination
between team members.

II. RESEARCH QUESTIONS

The goal of this work is to gain insight into two supposedly
different testing strategies —unit testing versus integration
testing— in a continuous integration setting. We analyse the
repositories of projects in TravisTorrent and their correspond-
ing issue tracking systems (JIRA or GitHub) in a quantitative
way in order to answer the following research questions:

RQ1 – Do unit tests expose more defects than integration
tests?

Motivation: In the normal testing life-cycle, unit testing
precedes integration testing because one should first rule
out the defects within a unit before one proceeds to find
defects between units [1]. A good testing strategy aims to
find defects as early as possible, hence the aspiration is
that unit tests find more defects than integration tests.
However, in a continuous integration setting both unit
tests and integration tests are coded in the same testing
harness —usually a variant of xUnit— and executed
simultaneously [3]. Thus, unit tests and integration tests
are treated similarly in a continuous integration setting,
hence it remains to be seen whether there is indeed a
difference.

RQ2 – Does the resolution of a defect exposed by an inte-
gration test take longer than that of a unit test?
Motivation: An integration test exercises the interfaces
between units, thus the defect is supposedly located in
the code that implements the protocol between the units.
Unfortunately, one cannot entirely rule out the code within
the units, thus the location of the defect is potentially
in all components involved in the integration test. Since,
the search space for locating the defect exposed by an
integration test is larger, we may expect that it takes
longer to resolve. Yet, here as well, the practice of
continuous integration is slightly different: both unit tests
and integration tests are meant to gain confidence and the
tests are meant to pass with every build. When a test fails,
the search space is restricted to the recent changes, thus
it is small in either case.

RQ3 – Does the resolution of a defect exposed by an integra-
tion test involve more coordination between the software
engineers than that of unit test?
Motivation: Once a test exposes a defect, it must be
assigned to a software engineer for resolution. For a
failing unit test it is rather straightforward: it is one
of the software engineers who recently worked on the
unit under test. However, for a failing integration test
it is not as straightforward since it may be any of the
software engineers implementing either the unit under
test or one of the dependent components. Thus, one
would expect that resolving a failing integration test
entails more coordination among the software engineers
involved. However, in a continuous integration setting it
is the issue tracking system which drives the work within
a team and it remains to be seen whether unit test or
integration test affects the workflow.

III. COMPLEMENTING THE DATASET

For this investigation we started from the TravisTorrent
dataset [4], which we complemented with data gleaned from
GitHub as well as JIRA. TravisTorrent contains the history of
build information of 1.359 open source projects written in ruby
and java; To complement the TravisTorrent dataset, we took a
series of actions detailed in the subsequent paragraphs.

Select Projects. For this investigation, we restricted ourselves
to 423 of the java projects where we could distinguish between
unit tests and integration tests and where we could rely on

information available in JIRA or GitHub to calculate the time
to fix.

Identify Defect Fixing Commits. To identify the defect fixing
commits, we distinguish between projects using GitHub or
JIRA as their issue tracking system, which determines the
search patterns to use in the project commit messages. We
download the repositories of 423 java projects from GitHub.
Then, we use JGIT [5] to walk though the commit history of a
project similar to Vahabzadeh et. al. [6]. We label a commit as
defect fixing commit, if it contains the issue ID coupled with
phrases like fixes or closes. Therefore, we search in the commit
messages for text patterns combining the issue ID with words
like fixes, fixed, fix, closes, closed, or close. We repeat this
process for each project to arrive at the database of projects
with their fixed defects.

Identify Failing Tests. Once we obtained a dataset of defect
fixing commits, we collect the names of those tests that expose
the defect by looking for the corresponding failing build in
the TravisTorrent dataset. We combine two approaches: on
the one hand, we analyse the logs of the builds provided
by TravisTorrent to see what precisely breaks the build, on
the other hand we simply use the failing test names (column
tr failed tests) available in the TravisTorrent dataset.

Distinguish between Unit Tests and Integration Tests.
We combined two heuristics to distinguish unit tests from
integration tests, one from information gleaned from the test
environment itself, the other one based on naming conventions
within the test code.

We looked into the use of the SureFire and FailSafe plugins
with Maven build system [7], [8]. SureFire corresponds with
a unit test, while FailSafe corresponds with an integration
test. Of course this only works for those projects that relied
upon Maven to build, hence this reduced the projects under
consideration.

To complement the former, we exploited naming conven-
tions adopted from the ones specified by Appel [9]. These state
that the class name of a unit test has the word “Test” as a suffix
(sometimes as a prefix) of the name of the class under test.
For example the unit test that tests a class named “SomeClass”
would be “SomeClassTest”. Similarly, the name of the inte-
gration test contains the word “IntegrationTest”. However, via
manual inspection, we learned that software engineers also use
acronyms or abbreviations of ”IntegrationTest”, such as “IT”,
which we also incorporated.

Using this process, we identified 9.118 tests of which 8.382
are unit tests (91.93%) and 736 (8.07%) are integration tests.
As can be expected the number of unit tests is significantly
higher than the number of integration tests.

After categorising the tests in unit tests and integration
tests, we classify the failing builds into three different cate-
gories.

1) unit tests when the set of failing tests contains only unit
tests,

2) integration tests when the set of failing tests contains only
integration tests, and

3) both when the set of failing tests contains both types of
tests.

Calculating Time to Fix. We calculate the time to fix of a
given defect as the duration between the time when an issue
is assigned to a software engineer until it is closed (Closed
Time - Assignation Time). This is a reasonable proxy for the
actual time spent in resolving an issue and is done by other
researchers as well [10], [11], [12]. Thus, for each defect in our
dataset, we collect the following information from the projects’
corresponding issue tracking system.

Creation Time — The datetime when the issue was created.

Assignation Time — The datetime when the issue was assigned
to a software engineer: it is useful to determine the resolution
time of the issue.

Closed Time — The datetime when the commit closed the
issue giving it the state of closed or resolved.

Assessing Team Coordination. Finally, we assess the amount
of team coordination required for fixing a defect from the
following fields in the issue tracker.

Number of comments — The number of comments by software
engineers on the discussion about resolving the issue.

Number of Unique Software Engineers — The number of
unique software engineers involved in any type of event related
to resolving a defect.

Fig. 1. The process to complement the TravisTorrent dataset

Figure 1 illustrates the process we followed to obtain the
final dataset. We found 79.078 defect fixing commits from
project repositories. Out of these 79.078 defect fixing commits,
there were only 16.203 where we could link the defect fixing
commit to a failing build in TravisTorrent. For 14.959 of these
defect fixing commits, there were no build logs available. Thus
there we could not identify the tests which exposed the defect,
hence were removed from the dataset. Eventually, this resulted
in 1.244 defects which we could link to failing tests. 5 of these
had the same Assignation Time and Closed Time —a practice
which occurs when software engineers first fix a defect and
only afterwards file an issue report— hence we excluded these
5 defects from our final dataset.

At the end of complementing the TravisTorrent dataset, we
arrived at 1.239 defects linked to one or more failing tests and
where we have the time to fix available. Table I shows details
of our final dataset.

TABLE I. DATASET DETAILS

#Projects #UTdefects
† #ITdefects

‡ #Bothdefects
∗ Total Defects

19 683 454 102 1.239
†

defects exposed by unit tests
‡

defects exposed by integration tests
∗

defects exposed by both unit tests and integration tests

TABLE II. TESTS DISTRIBUTION

UTnumber # ITnumber Tests Total
8.382 736 9.118

IV. FINDINGS

RQ1. Table I lists the number of defects exposed by unit tests,
versus the amount exposed by integration tests versus the ones
exposed by both an integration and a unit test.

The dataset contains more defects exposed by unit tests
than integration tests. Out of 1.239 defects, 683 (55%) are
exposed by unit tests, while 454 (37%) are exposed by
integration tests and only 102 (8%) are exposed by both unit
tests and integration tests together. This indicates that more
defects are exposed by unit tests than integration tests. This
may be partly explained by the distribution of the tests shown
in Table II; since there are significantly more unit tests than
integration tests.�
�

�
�

Unit tests expose more defects than integration tests. The
phenomenon is most likely due to effect size as there are
significantly more unit tests than integration tests.

RQ2. Figure 2a shows the distribution of time to fix the
defects in each category namely defects exposed by unit
tests, integration tests, and both unit tests and integration tests
together.

By analysing the distribution of the time to fix in each
category, we find that defects exposed by unit tests have
relatively longer time to fix than those exposed by integration
tests. However, the time is comparatively longer when the
defects are exposed by both unit tests and integration tests
together. Given the non-normal distribution of the time to fix,
we conducted a Kruskal-Wallis Test resulting in a p-value of
0.045. confirming that our results are statistically significant.

To reason about and explain further the variation in time
to fix the defects exposed by unit tests, integration tests, and
both unit tests and integration tests together, we also analyse
the number of tests failing for each defect. Figure 2b shows
the distribution of the number of failing tests in defects for
each category. We observe that when a defect is exposed by
integration test, it is always only one integration test failing.
However, when the defect is exposed by unit tests or both
unit tests and integration tests together, there are more failing
tests. This might also make it difficult to locate the defect,
hence increased time to fix. The Kruskal-Wallis Test resulted
in a p-value of 1.369e-05, confirming that the time to fix is
greatly affected by the number of failing tests.�

�

	
It takes more time to fix the defects exposed by unit tests
than those exposed by integration tests. However, when
both unit tests and integration tests fail together, the time
to fix the defects is even higher.

Unit tests Integration tests Both

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Defects Category

ti
m

e
 t
o
 f
ix

 t
h
e
 d

e
fe

c
ts

 i
n
 h

o
u
rs

(a) Distribution of time to fix the defects

Unit tests Integration tests Both

1
2

3
4

5
6

Defects Category
N

u
m

b
e
r

o
f
fa

ili
n
g
 t
e
s
ts

(b) Distribution of failing tests

Unit tests Integration tests Both

0
5

1
0

1
5

Defects Category

N
u
m

b
e
r

o
f
c
o
m

m
e
n
ts

(c) Distribution of comments

Unit tests Integration tests Both

1
2

3
4

5
6

7

Defects Category

N
u
m

b
e
r

o
f
u
n
iq

u
e
 s

o
ft
w

a
re

 e
n
g
in

e
e
rs

(d) Distribution of software engineers

Fig. 2. The boxplots showing distribution of various defect related factors without outliers

RQ3. Figure 2c shows the distribution of the number of
comments involved in resolving the defects for each category.
We see that software engineers engage in more discussions
when resolving defects exposed by unit tests compared to those
exposed by integration tests.

As we observed in Figure 2b; the number of failing tests
is larger when defects are exposed by unit tests or both unit
tests and integration tests together. We assume that since
there are more failing tests, software engineers discuss more
to understand the defect. Hence, the amount of comments
is higher when resolving the defects exposed by unit tests.
This also explains why it takes more time when resolving the
defects exposed by unit tests (Cf. RQ2). Since resolving the
defects exposed by unit tests takes more discussion amongst
software engineers, this may cause increase in time to fix the
defects. The Kruskal-Wallis Test over the number of comments
showed a p-value of 0.1183. Thus, we conclude that the
variation in comments for each category seems important even
though it is not statistically significant.

In addition, we also explore the number of software en-
gineers involved in resolving a defect, shown in Figure 2d.
Here we also observe that resolving the defects related to unit
tests involves more individuals than those of integration tests.
Calculating the statistical significance, we obtained 0.013.
We used the Fisher’s method for combining the p-values of
the number of comments and the number of unique authors
involved and got a resulting p-value of 0.0115. This leads
to the conclusion that the involvement of the community is
strongly differentiated in every category of tests.�
�

�
�

There are more software engineers involved in resolving
the defects exposed by unit tests than those exposed by
integration tests and it requires more coordination.

V. CONCLUSION

In this paper, we analyse the repositories of projects in
TravisTorrent and their corresponding issue tracking systems
(JIRA or GitHub) in a quantitative way in order to gain insight
into the differences between unit testing and integration testing

in a continuous integration setting. Our results show that for
the 1.239 defects under investigation, unit tests indeed cause
more builds to fail. However, contrary to our expectations,
fixing defects exposed by unit tests takes longer and involves
more communication between team members. These results
suggest that the MSR community should be careful when
analysing how software teams handle defects. When mining
for actionable information from test code, researchers should,
at least, distinguish between unit- and integration tests.

REFERENCES

[1] R. V. Binder, Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Professional, 2000.

[2] B. Adams and S. McIntosh, “Modern release engineering in a nutshell
– why researchers should care,” in Leaders of Tomorrow: Future of
Software Engineering, Proceedings of the 23rd IEEE International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
Osaka, Japan, March 2016.

[3] L. Crispin and J. Gregory, Agile testing; a practical guide for testers
an agile teams. Addison-Wesley, 2009.

[4] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,”
in Proceedings of the 14th working conference on mining software
repositories, 2017.

[5] “Jgit library,” https://eclipse.org/jgit/.
[6] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of

bugs in test code,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sept 2015, pp. 101–110.

[7] “Maven surefire plugin,” http://maven.apache.org/components/surefire/
maven-surefire-plugin/, accessed: 2017-02-08.

[8] “Maven failsafe plugin,” http://maven.apache.org/surefire/
maven-failsafe-plugin/, accessed: 2017-02-08.

[9] F. Appel, Testing with Junit, ser. Community experience distilled.
Packt Publishing, 2015. [Online]. Available: https://books.google.be/
books?id=NzsbjgEACAAJ

[10] S. N. Ahsan, M. T. Afzal, S. Zaman, C. Guetl, and F. Wotawa, “Mining
effort data from the oss repository of developers bug fix activity,”
Journal of IT in Asia, vol. 3, pp. 67–80, 2010.

[11] P. Ramarao, K. Muthukumaran, S. Dash, and N. L. B. Murthy, “Impact
of bug reporter’s reputation on bug-fix times,” in 2016 International
Conference on Information Systems Engineering (ICISE), April 2016,
pp. 57–61.

[12] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of the Fourth International
Workshop on Mining Software Repositories. IEEE Computer Society,
2007, p. 1.

https://eclipse.org/jgit/
http://maven.apache.org/components/surefire/maven-surefire-plugin/
http://maven.apache.org/components/surefire/maven-surefire-plugin/
http://maven.apache.org/surefire/maven-failsafe-plugin/
http://maven.apache.org/surefire/maven-failsafe-plugin/
https://books.google.be/books?id=NzsbjgEACAAJ
https://books.google.be/books?id=NzsbjgEACAAJ

