Optimising and Assessing the Effectiveness of
Spectrum Based Fault Localisation

Proefschrift voorgelegd tot het behalen van de
graad van Doctor in de Wetenschappen: Informatica
aan de Universiteit Antwerpen te verdedigen door:

Gulsher Laghari

Promotor
prof. dr Serge Demeyer:

Faculteit Wetenschappen U N ive rSite It

Departement Wiskunde-Informatica

Antwerpen, 2018 Antwerpen

Cover illustration:
Fault localisation, which is finding the root cause of a failure, can be non-trivial and
equivalent to looking for a needle in a haystack.

Optimising and Assessing the Effectiveness of

Spectrum Based Fault Localisation

Gulsher Laghari

Universiteit
Antwerpen

Promotor:

prof. dr. Serge Demeyer

Proefschrift ingediend tot het behalen van de graad van
Doctor in de wetenschappen: Informatica

This dissertation has been approved by

Promotor: prof. dr. Serge Demeyer

Doctoral jury
David Lo
Rui Maranhao Abreu
Bart Goethals
Dirk Janssens
Serge Demeyer

Singapore Management University, Singapore
University of Lisbon, Portugal

University of Antwerp, Belgium

University of Antwerp, Belgium

University of Antwerp, Belgium

To mother, Rabail, Zoha, Zaid, Rafay,. ..

Acknowledgments

My promotor Serge Demeyer kept telling me that the PhD journey is permanent state of

identity crisis. This crisis finally comes to anend

Over the period of 4 years of this PhD journey, I firmly believe that this journey was
not possible without the support of important people and you must acknowledge them.

First, I am grateful to Serge Demeyer for believing in me and providing me with the
opportunity of his guidance and supervision. I particularly admire the academic freedom
you allowed to follow and lead my own research, which has been giving me the courage,

confidence, enthusiasm...

I'would also like to thank Alessandro Murgia for helping me with my research. While
sharing the office with you, I had the opportunity to have brainstorming sessions. This

goes for Quinten Soetens as well.

I would particularly thank Martin Monperrus for discussing my research at Lille,
pointing me to the dataset, and reviewing the early draft of ASE paper. This was really a

great source of encouragement for me.

Next, I would like to thank my doctoral jury members Serge Demeyer, Bart Goethals,
Dirk Janssens, David Lo, and Rui Maranhao Abreu for their feedback on this thesis and
for the questions and interesting discussion at the preliminary defence. Special thanks
to Rui and David for being part of my doctoral jury.

I thank to Ali, Brent, Diana for reviewing the early drafts of papers, dry runs for
presentations, and research discussions. I thank all members of Ansymo Serge, Javier,
Alessandro, Quinten, Ali, Diana, Dirk, Njima, Sten, Hans, Tim, Bart, Simon, Yentl, Istvan,
Claudio, and Joachim especially for joyful and fun discussions at the lunch time.

Similarly, I also thank to people who visited our lab and talked to me about my re-
search including Thomas Fritz, Eleni Stroulia, and Marcelo de Almeida Maia.

I thank people at the secretariat including Caroline, Vera, and Mieke to help me with
administrative work. Similarly, I would thank to Mrs. Lot Vanduffel for helping me with
the accommodation at Antwerp. I thank many people at ITBS with whom I had a good

time. You all know I am referring to you so no need to enumerate your names :)

I am thankful to Siddiq, you received me at the Brussels airport when I arrived first
time in Belgium and also provided me with company in initial days. Thanks to Altaf and

Kirshan especially for travelling with me in Europe.

I owe to University of Sindh, Jamshoro who provided me with the necessary funding
for whole PhD. Thanks also to people at University of Sindh for taking care of all the

administrative and necessary work.

I also thank to Shahmurad, Saad, Kamran, and Yaqoob for always being with me
through Whatsapp to ensure that I never miss the friendly chatter.

I would especially thank Abdul Razzaque to always support me and taking care of
my family while I was away.

Thank you mom for always supporting and praying for me at every decision of my
life. Your love, support, and prayers are my real strength in life. Finally, I thank to my
family Rabail, Zoha, Zaid, and Rafay to complement my life and being with me.

Gulsher Laghari
Antwerp, May 2018

Abstract

Software, today, is the driving force in our modern society. However, the dynamic na-
ture of the world has severe implications on the software as it must constantly adapt to
ever changing requirements. This evolution then might introduce new faults or trigger
dormant faults already lurking in the system. When the software is deployed with such

faults, this may have unfortunate consequences.

Software testing acts as a safety net to detect these faults early on. Therefore, modern
software teams spend lots of effort writing tests. Once the tests expose the faults, soft-
ware developers need to fix them. The first —and the most difficult— step is to locate the
exact location of the fault in the millions lines of code. Spectrum based fault localisation
are techniques designed to aid developers in locating the fault. The main advantage of
spectrum based fault localisation is that it only requires the faulty program and the set
of test cases that expose the fault. With that input, the techniques statistically analyse the
coverage information of the test cases and deduce a ranked list of possible locations. Un-
fortunately, in the current state of the art, spectrum based fault localisation have limited
diagnostic accuracy: for some faults they succeed in pinpointing the exact location but
for many others they miss.

This thesis aims to increase the effectiveness of spectrum based fault localisation. To
this end, the thesis explores the use of closed itemset mining and sequence mining in spec-
trum based fault localisation and demonstrates that both closed itemset mining and se-
quence mining increase the effectiveness of spectrum based fault localisation. Moreover,
we evaluate the spectrum based fault localisation from a new perspective; how does it
perform on easy- and difficult-to-locate faults. We argue and demonstrate that defects
exposed by component tests imply a larger search space and hence are difficult-to-locate
compared to defects exposed by unit tests, which imply a rather smaller search space. We
conclude that spectrum based fault localisation techniques perform far better on faults
exposed by unit tests compared to faults exposed by component tests, hence there is still
room to optimise it for difficult-to-locate faults exposed by component tests.

Nederlandstalige Samenvatting

Vandaag is software de drijvende kracht in onze snel evoluerende samenleving. De dy-
namiek van onze samenleving impliceert echter dat de software zich continu moet aan-
passen of gedoemd is om uit te sterven. Dit aanpassingsproces introduceert onvermi-
jdelijk fouten die soms ver strekkende gevolgen kunnen hebben.

Software tests fungeren als het eerste vangnet om fouten reeds in een vroeg stadium
op te sporen. Zodra zo'n test een fout detecteert, moet ze gerepareerd worden. Om de
fout te repareren moet eerst de oorzaak van de fout in de potentieel miljoenen regels
beschikbare programmacode bepaalt worden. Spectrum based fault localisation is een
speciale klasse van technieken ontworpen om programmeurs te helpen bij het vinden
van de oorzaak van een fout. Deze technieken hebben enkele belangrijke voordelen,
maar helaas is in de huidige stand van zaken de nauwkeurigheid beperkt: voor sommige
fouten werkt het uitstekend, maar voor vele andere slaan ze de bal volledig mis.

Dit proefschrift heeft tot doel de effectiviteit van spectrum based fault localisation te
verhogen. Hiervoor hebben we bestaande technieken gecombineerd met data-mining al-
goritmes (cfr., closed itemset mining en sequence mining) waarbij we vaststellen dat de
nauwkeurigheid inderdaad verhoogd. Bovendien evalueren we die nauwkeurigheid va-
nuit een nieuw perspectief waarbij we een onderscheid maken tussen fouten blootgesteld
via unit-tests (waar de zoekruimte beperkt is) en fouten blootgesteld door component-
tests (waar de zoekruimte groter is). We stellen vast dat spectrum based fault localisation

vooral goed werkt voor de eerste categorie.

Publications

Papers, directly or indirectly, included in this Thesis.

1. Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. Localising Faults in
Test Execution Traces. In Proceedings of the 14th International Workshop on Principles
of Software Evolution (IWPSE 2015), 1-8. Bergamo, Italy. August, 2015.

URL: http://doi.acm.org/10.1145/2804360.2804361.

2. Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. Improving Spectrum
Based Fault Localisation Techniques. In Proceedings of the 14th Belgian-Netherlands
Software Evolution Workshop (BENEVOL 2015), . Lille, France. December, 2015.
URL: http://cristal.univ-lille.fr/evolille2015/program.html.

3. Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. Fine-tuning Spectrum
Based Fault Localisation with Frequent Method Item Sets. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE 2016),
274-285. Singapore, Singapore. September, 2016.

URL: https://doi.org/10.1145/2970276.2970308.

4. Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. Fine-tuning Spectrum
Based Fault Localisation with Sequence Mining. In Proceedings of the 15th Belgian-
Netherlands Software Evolution Workshop (BENEVOL 2016), . Utrecht, the Nether-
lands. December, 2016.

URL: https://benevol2016.wordpress.com/program/.

5. Gulsher Laghari and Serge Demeyer. On the Use of Sequence Mining within Spec-
trum Based Fault Localisation. In Proceedings of the Symposium on Applied Comput-
ing (SAC 2018), 1916-1924. Pau, France. April, 2018.

URL: https://doi.org/10.1145/3167132.3167337.

6. Gulsher Laghari and Serge Demeyer. Poster — Unit Tests and Component Tests
do Make a Difference on Fault Localisation Effectiveness. In Proceedings of the 40th

http://doi.acm.org/10.1145/2804360.2804361
http://cristal.univ-lille.fr/evolille2015/program.html
https://doi.org/10.1145/2970276.2970308
https://benevol2016.wordpress.com/program/
https://doi.org/10.1145/3167132.3167337

International Conference on Software Engineering Companion (ICSE-C 2018), . Gothen-
burg, Sweden. May-June, 2018.

URL: https://www.icse2018.org/event /icse-2018-posters-poster-unit-tests-and-component-
tests-do-make-a-difference-on-fault-localisation-effectiveness.

Other papers published/produced during the course of the PhD.

7. Gerardo Orellana, Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. On
the Differences between Unit and Integration Testing in the TravisTorrent Dataset.
In Proceedings of the 14th International Conference on Mining Software Repositories (MSR
2017), 451-454. Buenos Aires, Argentina. May, 2017.
URL: https://doi.org/10.1109/MSR.2017.25.

https://www.icse2018.org/event/icse-2018-posters-poster-unit-tests-and-component-tests-do-make-a-difference-on-fault-localisation-effectiveness
https://www.icse2018.org/event/icse-2018-posters-poster-unit-tests-and-component-tests-do-make-a-difference-on-fault-localisation-effectiveness
https://doi.org/10.1109/MSR.2017.25

Contents

Acknowledgments v
Publications xi
1 Introduction 1
1.1 Spectrum Based Fault Localisation 2
1.2 Problem Statement e e e e 2
1.3 Data mining and Fault Localisation 5
1.4 Contributions e 6
1.5 ThesisOutline 6
1.6 Originof Chapters 7

2 Localising Faults in Test Execution Traces 9
2.1 IntroducCtion o v v vt e e e e e e e e e e 9
2.2 Heuristics Under Investigation 11
2.2.1 Spectrum Based Fault Localisation 12

2.2.2 Collecting Traces v v v v v v i e e e e e e e e e 12

2.2.3 From Tracesto Class Sequences 13

2.2.4 RankingClasses. it 14

2.3 Experimental Setup i 15
2.3.1 Replication Case —NanoXML 15

2.3.2 ReplicationDetails 16

2.4 Resultsand discussion 17
2.4.1 Anecdotal Evidence, 19

242 DisCUSSION v vt e e e e e e e 21

2.5 Relatedwork 22
2.5.1 Spectrum Based Fault Localisation 22

2.5.2 Program Comprehension. 23

2.6 ThreatstoValidity 24
2.7 Conclusion e 25
2.8 Acknowledgments 26

3 Fine-tuning Spectrum Based Fault Localisation with Frequent Method ltem

Sets 27
3.1 Introduction v v it e e e e e e e e e e e 28
3.2 Stateofthe Art e 29
3.3 Motivating Scenariol o e e e 32
3.3.1 Requirements ittt e e e e 35
3.4 Patterned Spectrum Analysis o 36
3.4.1 CollectingtheTraceo, 36
3.42 SlicingtheTrace 38
3.4.3 Obtaining CallPatterns. 38
3.4.4 Calculating the Hit-Spectrum 38
3.45 RankingMethods 39
3.5 CaseStudy Setupo e e 41
3.6 Resultsand Discussion 44
3.7 Possible Improvements e e e 49
3.8 ThreatstoValidity i 51
3.9 Conclusion e e 53
3.10 Acknowledgments 54

4 On the Use of Sequence Mining within Spectrum Based Fault Localisation 55

4.1 Introduction e 55
4.2 Background e 57
4.3 Sequenced Spectrum Analysis o L. 59
4.3.1 Collectingthe Trace v i, 59
4.3.2 Obtaining Call Sequences 60
4.3.3 Calculating the Hit-Spectrum 60
4.3.4 RankingMethods 61

4.4 Evaluation e e 61
4.4.1 Dataset e e e e e e e 61
4.4.2 Evaluation Metrics e 62
4.4.3 Experimental Protocol 64

45 Results o 65
4.6 RelatedWork 74
4.7 ThreatstoValidity 75
4.8 Conclusion 76
4.9 Acknowledgments 76
5 Spectrum Based Fault Localisation: What about Component Tests ? 77

5.1 Introduction i i i i e e 77

5.2 Fault Localisation Techniques 79
5.3 CaseStudy Setup« v v i e e e e 81
5.3.1 Refining Defects4J 82

5.3.2 Evaluation Metrics i 83

5.3.3 ResearchQuestions i, 85

5.3.4 EvaluationProtocol. 86

5.4 Resultsand Discussion 87
5.5 ThreatstoValidity 98
5.6 Related Work e 100
5.7 Conclusion e 102
5.8 Acknowledgments. e 103

6 Conclusions 105
6.1 Summary of Contributions 105
6.2 Summary of Research Questions. 106
6.3 Outlook e 108
Appendices 111
A Defects4J Refinements 113
A.1 Algorithm to categorise the faults 113
A2 Tlustrative Examples 115

Bibliography 131

List of Figures

2.1

2.2

3.1
3.2

4.1
4.2

5.1
5.2

5.3

Overview of the two heuristics showing three steps (i) Collecting tracing,

(ii) Collecting class sequences, and (iii) Ranking classes. 11
Search Length in SPEQTRAand AMPLE. 18
The comparison plots of all the rankingsineachlLang 46
Number of Triggered Methods vs. Wasted Effort 48
Comparison of the distribution of absolute rankings for faulty methods. . . 67

Distributions of absolute ranks of faulty methods for both spectrum analyses
foreach project. i e e 71

Assessment of the size of the search space for unit tests and component tests. 88
Distributions of absolute ranks of faulty methods for both spectrum analyses
using all fault locators in a best-case debugging scenario for all fault categories. 91
Distributions of absolute ranks of faulty methods for both spectrum analyses
distinguishing between unit test and component test related faults. 98

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

4.1
4.2

4.3

4.4

4.5
4.6

5.1
5.2
5.3
5.4

NanoXML version details 15
Average Search Length in SPEQTRA and AMPLE 18
An Example Test Coverage Matrix and Hit-Spectrum 29
Popular Fault Locators i v v i it 29
A Sample Trace Highlighting Calls in Listing 3.1 37
An Example Test Coverage Matrix for Method collaborate() 40
Descriptive Statistics for the Projects Used in Our Experiments — Defects4d 42
Naish within Raw Spectrum Analysis vs. Tarantula, Ochiai and T* 44
Comparing Wasted Effort: Patterned Spectrum Analysis vs Raw Spectrum

Analysis e e e 45
Number of Faults where Wasted Effortis <10 45
Number of Triggered Methods vs. Wasted Effort 47
Descriptive Statistics for the Projects Used in Our Experiments 62

Establish the baseline performance for raw spectrum analysis over the 346
defectsinthe dataset. 66

Performance improvement for sequenced spectrum analysis over the 346
defectsinthedataset., 68

Project specific comparison of sequenced spectrum analysis (SS) versus raw

spectrum analysis (RS). e 70
Significance tests for sequenced spectrum analysis vs. raw spectrum analysis. 72
Summary of time taken by each spectrum analysis for all projects. 73
Popular Fault Locators vt i ittt 80
Descriptive Statistics— Defectsdd 81
Descriptive Statistics: Called Methods by Test Types 88
Overall Scores of All Fault Localisation Techniques in Both Families for All

Projects. The Values with Bold-face Indicate the Best Performing Technique. 89

5.5

5.6
5.7
5.8

Al

A2

Comparisons of the Two Families Showing the Top Ranked Techniques, the
Tournament Scores, and the p-values Using All Faults. The Values with
Bold-face Indicate One Variant is Significantly Better Than the Other. . . .
Comparisons of the Two Families for Faults Revealed by Unit Tests.

Comparisons of the Two Families for Faults Revealed by Component Tests.
Summary of Analysis Times.

Called classes during the execution of failing test case in project Lang (Bug
ID6D)
Called classes during the execution of failing test case in project Lang (Bug
ID7D) . . e e e e e

CHAPTER

Introduction

Our world and society are shaped and governed by software: almost all devices, ma-
chines, and artefacts surrounding us incorporate software to some extent. Additionally,
the numerous organisations, businesses, and enterprises we encounter on a daily basis
could not function without software—a world without software is unimaginable. How-
ever, these added benefits offered by software accompany the intense unintended suffer-
ings and losses manifested via software failures [1, 2, 3]. Consequently, building software
systems without faults is the holy grail of the software engineering community and lots
of research has been conducted into efficient ways of finding faults at all stages of the
software production process.

The advent of xUnit like automated testing frameworks made software testing eas-
ier [4]. Moreover, testing is the fundamental driver of continuous integration— an impor-
tant and essential phase in a modern release engineering pipeline [5]. Thus, software
testing ensures to filter out faults early on and serves as a safety net for fault detection—
an oracle. Once the fault is detected through testing, the first step in debugging is fault
localisation, that is to precisely pinpoint the faulty code.

To help developers quickly locate the faults, there exist automated fault localisation
techniques. These techniques produce a ranked list of program elements indicating the
likelihood of a program element causing the fault. User studies hint that they can pos-
itively aid developers in debugging [6]. These techniques can be seen as two broad cat-
egories, information retrieval based fault localisation and spectrum based fault localisa-
tion, based on the inputs required and the type of analysis done. Information retrieval
based fault localisation uses bug reports and source code files for static analysis [7, 8,9, 10],
while spectrum based fault localisation uses program traces generated by dynamic analy-

sis [11, 12, 13, 14]. Since spectrum based fault localisation techniques only require traces

CHAPTER 1. INTRODUCTION

from test runs— readily available after running the regression test suite— these heuristics

are ideally suited for locating regression faults.

1.1 SPECTRUM BASED FAULT LOCALISATION

Spectrum based faultlocalisation is a lightweight yet quite effective heuristic to quickly
pinpoint the faults. It requires as input the faulty program and the test suite, and pro-
duces as output a ranked list of program elements with the aim to place the faulty ele-
ments on top of the list. It runs the test suite on faulty program to collect the coverage of
program elements. The coverage of each element is represented in a tuple of four values
called hit-spectrum, which is used by fault locator functions as input to output the suspi-
ciousness of the element indicating its likelihood to be faulty. These hit-spectra represent
the abstract behaviour of the program and are the only means to reason about the fault,
in this thesis we refer to this as raw spectrum analysis (See more details in Section 3.2).
The raw spectrum analysis does not need any information as input other than the faulty
program itself and the tests that detect the fault.

12 PROBLEM STATEMENT

Today, spectrum based fault localisation can be seen in a three dimensional space.
The first dimension is the granularity, researchers have been experimenting with the dif-
ferent levels of granularity as program element (e.g. statements, blocks, methods, and
classes). The second dimension is the fault locator, researchers have been experimenting
with the different fault locator functions (e.g. from molecular biology [15], association
measures [16], through a theoretical model [17], and genetic programming [18]). The
third dimension, which is also the subject of this thesis, is changing the hit-spectrum. Other
researchers did similar investigations recently, e.g. time-spectrum [19], method invari-
ants [20], and code metrics [21]. See more in Section 3.2 and Section 4.6.

In this thesis, we explore the third dimension as well, changing the hit-spectrum via
closed itemset mining and sequence mining. To verify the effectiveness of closed itemset min-
ing, we first do a pilot study. As a pilot study, we replicate AMPLE, a tool which computes
the sequence of method calls by sliding a window over the trace to locate the faulty classes
by comparing the sequence of method calls between failing and passing tests [22]. Thus,

we attempt to answer the preliminary research question.

Do the patterns of method calls extracted via closed itemset mining help boost the fault

localisation accuracy in locating the faulty classes?

To answer this research question, in Chapter 2 we create a new fault localisation

1.2. PROBLEM STATEMENT

heuristic (SPEQTRA), which leverages closed itemset mining [23] to compute the sequence
of method calls and compares these sequences to pinpoint faulty classes. We compare
SPEQTRA against AMPLE on the NanoXML dataset and demonstrate the following.

SPEQTRA can immediately pinpoint the faulty class in 56% of all test runs, whereas
with AMPLE it is only 40%. Moreover, for 70% of the faults, SPEQTRA has at most
one false positive whereas for AMPLE this happens for 59% of the faults.

Since the patterns of method calls extracted via closed itemset mining are effective in
locating faulty classes, this gives the confidence to explore their application from course-
grained granularity classes to fine-grained granularity methods. To this end, we modify the
hit-spectrum with the patterns of method calls extracted via closed itemset mining to locate
the faulty methods. Contrary to raw spectrum analysis where the hit-spectrum of a method
indicates whether or not the method is involved in test cases, we modify the hit-spectrum
with call patterns of the method. The hit-spectrum of call patterns for a method not only
indicates whether or not the method is involved in a test case, but also summarises its
run-time behaviour. In this thesis we refer to this spectrum analysis as patterned spectrum
analysis (See details in Section 3.4.4). Like raw spectrum analysis, patterned spectrum analysis
also does not need any information as input other than faulty program itself and the tests
that detect the fault. Then, we attempt to answer the primary research question.

What is the overall performance of patterned spectrum analysis?

To answer this research question, we compare the two spectrum analyses (patterned
spectrum analysis and raw spectrum analysis) experimentally on Defects4dJ dataset in Chap-
ter 3 and find the following.

For 68% faults in the dataset, the patterned spectrum analysis performs better than
raw spectrum analysis. The patterned spectrum analysis improves by 14% points in
ranking the root cause of the fault in the top 10. Moreover, patterned spectrum analysis

is more stable than raw spectrum analysis when the size of the ranked list increases.

Since closed itemset mining misses the order of method calls and does not allow repeti-
tive calls in the pattern, next we explore what the effect of sequence mining is. For this we
replace the closed itemset mining with sequence mining in the algorithm presented in Chap-
ter 3 and refer to it as sequenced spectrum analysis. Then we ask the primary research
question.

CHAPTER 1. INTRODUCTION

What is the effectiveness and efficiency of sequenced spectrum analysis?

To answer this research question, we compare the sequenced spectrum analysis against
raw spectrum analysis) experimentally on the Defects4J dataset in Chapter 4 and observe
the following.

Comparatively sequenced spectrum analysis gains 12% improvement in ranking the
faulty method at top and reduces the average wasted effort from 96.73 to 25.88 implying
that on average ~ 26 non-faulty methods need to be inspected in vain before pinpointing
the faulty method. However, due to the additional overhead induced by the mining

algorithm, sequenced spectrum analysis becomes impractical for large projects.

Finally, we evaluate the effectiveness of spectrum based fault localisation by distin-
guishing between easy- and difficult-to-locate faults. We argue and demonstrate that
defects exposed by component tests imply a larger search space and hence are difficult-
to-locate compared to defects exposed by unit tests which imply a rather smaller search
space. Thus, we ask the primary research question.

What is the performance of spectrum based fault localisation on easy-to-locate faults
(exposed by unit tests) and difficult-to-locate faults (exposed by component tests)?

To answer this research question, we separate the faults in Defects4J dataset into two
main categories (faults exposed by component tests and unit tests) in Chapter 5. Cate-
gorising the faults into easy- and difficult-to-locate faults based on the type of the test
may not necessarily represent the optimum strategy. Yet, it lays out a foundation by
providing a ballpark estimate on the effectiveness of spectrum based fault localisation
on easy- and difficult-to-locate faults [24]. Then, we construct a suite of spectrum based
fault localisation, attempt to tease out the performance difference of spectrum based fault
localisation on easy- and difficult-to-locate faults, and demonstrate the following.

All spectrum based fault localisation techniques perform far better on faults exposed by
unit tests compared to faults exposed by component tests, which confirms that the per-
formance of a spectrum based fault localisation technique depends a lot on the presence

of faults exposed by unit tests and component tests in the dataset.

1.3. DATA MINING AND FAULT LOCALISATION

1.3 DATA MINING AND FAULT LOCALISATION

Several researchers have incorporated a plethora of data mining techniques to further
improve software fault localisation. The intrinsic motivation for all of these attempts
is that for a heuristic to be effective it needs to incorporate more information about the
context of the fault. Data mining may achieve this by focussing on temporal relationships,
exceptional behaviour,

In their pioneering work, Hsu et al. introduced the term bug signature to provide the
developers with the context for fault localisation [25]. For example, when the statement s;
is followed by the execution of statement s, results into the failure. They defined the bug
signature as the sequences of program elements that, when executed in order, are likely
to lead to a failure. In their work the program elements are statements corresponding to
method entries and branches. The bug signature is mined from the traces and is a pattern
representing the common subsequence.

Inspired by the work of Hsu et al., which encodes mining the bug signature as the
problem of common subsequence identification, Cheng et al. define the problem as a
graph mining problem [26]. Thus, they model execution traces as a graph and refer to
this graph as software behaviour graph and mine the top-k discriminative subgraphs
as bug signatures. Lo et al. optimised the top-k subgraphs as bug signatures to mine
minimal signatures and signatures from disjoint graphs also [27]. This work has also

lead to further optimisations as predicated bug signatures [28, 29].

Similarly, in this thesis, we also use mining algorithms— closed itemset mining and
sequence mining— to mine patterns representing the execution summaries to optimise
spectrum based fault localisation.

Mapping the terminology. In data mining a record of events is referred to as a transac-
tion and the set of transactions as the database. The input to any mining algorithm is the
database of those transactions along with the interestingness measure.

In this thesis we map the data mining terminology as follows. In Chapter 2, we are
interested in the patterns of a class during the the execution of a test case. Thus, the
transaction is the set of all outgoing method calls from an object of that class and the
database comprises all the transactions for each created object of that class. Then, the call
patterns for this class for the test case are mined from this database.

In Chapter 3, we are interested in the patterns of a method (thus more fine-grained
than a class) during the the execution of a test case. Therefore, a transaction in that case is
all the outgoing method calls from a single method with the same object instance during
the execution of a test case. The database then comprises all the transactions from all
different objects instantiated during a test execution. Then, the call patterns for the single

CHAPTER 1. INTRODUCTION

method for the test case are mined from this database.

1.4

CONTRIBUTIONS

The main contributions of this thesis are as follows.

B We replicate a study which uses sequence of method calls extracted via closed item-

1.5

set mining, and demonstrate that closed itemset mining boosts spectrum based fault

localisation in locating faulty classes.

We propose the use of closed itemset mining in context of spectrum based fault lo-
calisation. Thus, we create a new spectrum based fault localisation technique by
modifying the hit-spectrum with the patterns of method calls obtained via closed
itemset mining. We demonstrate that closed itemset mining improves the effectiveness

of spectrum based fault localisation.

We apply sequence mining in context of spectrum based fault localisation by replac-
ing closed itemset mining with sequence mining to measure and evaluate the effect of
sequence mining. We also measure the performance of 47 fault locators with both
raw spectrum analysis and sequenced spectrum analysis on the Defects4J dataset and
rank them according to their performance.

We refine the Defects4J dataset and separate the faults into two categories; faults ex-
posed by unit tests and faults exposed by component tests. We show that the search
space to locate the faults exposed by unit tests is smaller, hence these represent easy-
to-locate faults and the search space is larger for faults exposed by component tests,
hence represent difficult-to-locate faults.

Finally, we assess the effectiveness of spectrum based fault localisation with a new
evaluation perspective. We measure how spectrum based fault localisation tech-
niques perform against faults exposed by unit tests and component tests, and show
that the performance of spectrum based fault localisation techniques decreases on
faults exposed by component tests confirming that these are indeed difficult-to-
locate faults.

THESIS OUTLINE

The thesis is structured as follows. Chapter 2 explores and evaluates the use of closed

itemset mining to locate the faulty classes. Chapter 3 studies the application of closed item-

set mining further to locate the faulty methods. Chapter 4 plugs in the sequence mining

in place of closed itemset mining, presented in Chapter 3, to measure the effect of sequence

mining on the fault localisation effectiveness. Chapter 5 assesses the effectiveness of spec-

trum based fault localisation techniques on easy-to-locate faults exposed by unit tests and
difficult-to-locate faults exposed by component tests. Finally, Chapter 6 recapitulates the
thesis contributions and provides an outlook on future work.

1.6 ORIGIN OF CHAPTERS

Each of the chapters in the thesis is peer-reviewed. Chapters 2 to 4 were published in
peer-reviewed software engineering venues while Chapter 5 is not published yet— only
an extended abstract is published.

CHAPTER 2 was published in the Proceedings of the 14th International Workshop on Prin-
ciples of Software Evolution (IWPSE 2015) [30].

CHAPTER 3 was published in the Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2016) [31]. An earlier version of the
chapter appeared in the Proceedings of the 14th Belgian-Netherlands Software Evolution
Workshop (BENEVOL 2015).

CHAPTER 4 was published in the Proceedings of the Symposium on Applied Computing
(SAC 2018) [32] in SVT - Software Verification and Testing Track. An earlier version
of the chapter appeared in the Proceedings of the 15th Belgian-Netherlands Software
Evolution Workshop (BENEVOL 2016).

CHAPTER 5 is not published yet. However, an earlier version of the chapter will ap-
pear as an extended abstract in the Proceedings of the 40th International Conference on
Software Engineering Companion (ICSE-C 2018) [33].

CHAPTER

Localising Faults in Test Execution Traces

"1 Localising Faults in Test Execution Traces

Gulsher Laghari, Alessandro Murgia, and Serge Demeyer

In Proceedings of the 14th International Workshop on Principles of Software Evolution
(IWPSE 2015), 1-8. Bergamo, Italy. August, 2015.

DOIL: http://doi.acm.org/10.1145/2804360.2804361.

This chapter was originally published in the Proceedings of the 14th International Workshop on Principles of Software Evolu-
tion (IWPSE 2015).

ABSTRACT

With the advent of agile processes and their emphasis on continuous integration, automated tests
became the prominent driver of the development process. When one of the thousands of tests fails,
the corresponding fault should be localised as quickly as possible as development can only proceed
when the fault is repaired. In this chapter we propose a heuristic named SPEQTRA which mines
the execution traces of a series of passing and failing tests, to localise the class which contains the
fault. SPEQTRA produces ranking of classes that indicates the likelihood of classes to be at fault.
We compare our spectrum based fault localisation heuristic with the state of the art (AMPLE) and
demonstrate on a small yet representative case (NanoXML) that the ranking of classes proposed
by SPEQTRA is significantly better than the one of AMPLE.

2.1 INTRODUCTION

The quintessential principle of continuous integration declares that software engi-

neers should merge their working copies with the main branch several times a day [34].

http://doi.acm.org/10.1145/2804360.2804361

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

During each integration step, a continuous integration server builds the entire project,
using a fully automated process involving compilation, unit tests, integration tests, code
analysis, security checks, etc. When one of these steps fails, the build is said to be broken;
development can then only proceed when the fault is repaired [35, 36]. The safety net on
automated tests, encourages software engineers to write lots of tests — several reports in-
dicate that there is more test code than application code [37, 38, 39]. Moreover, executing
all these tests sometimes take several hours [40]. Hence, it is critical to quickly identify
the location of the fault in the code. Not only does a broken build block all progress in
the team, but more importantly the location of the fault serves as an indicator for the
software engineer expected to repair the build.

In the simplest case, there is a one-to-one mapping between the failing test and the
class containing the fault. However, for complex object interactions where objects must
adhere to a certain protocol, illegal call sequences trigger faults which are notoriously
hard to pinpoint to an exact location [41]. Faults induced by illegal method call sequences
are real and hard to debug: a conservative estimation identified 115 faults related to miss-
ing method calls in the Eclipse bug repository [42]. For such faults the one-to-one map-
ping between the failing test and the class containing the fault does not hold and then
software engineers resort to debugging [43].

Luckily, there is a class of heuristics —named spectrum based fault localisation— which
give indications for the location of the fault. Such heuristics compare execution traces
of passing tests against the ones from a failing test, assuming that the points where the
traces differ are the most likely location of the fault [13]. The state of the art heuristic for
class level fault localisation by analysing method call sequences in unit tests is proposed
by Dallmeier et al. with a tool called AMPLE [22]. AMPLE traces method calls invoked by
objects and collects call sequences of the corresponding classes by sliding a window over
the executions traces. It then compares the execution trace of all passing tests against one
trace with a failing test and deduces which class most likely contains the fault. AMPLE
was shown to be quite effective on a small yet representative case (NanoXML): it could
immediately pinpoint the faulty class in 36% of all test runs; while on average 21% of the
executed classes (10% of all classes) must be inspected to find the location of the fault.

In this chapter we report on a replication experiment (different heuristic & same data)
where we compare a new fault localisation heuristic named SPEQTRA against the state
of the art AMPLE. SPEQTRA addresses two shortcomings of the AMPLE heuristic: (a)
it filters out repetitive method calls (e.g. contained in loops) and (b) avoids the sliding
window and the arbitrary upper limit on the length of the call sequence it imposes. To ad-
dress these shortcomings, SPEQTRA uses a different algorithm (closed itemset mining)
to characterise method call sequence and distinguish the faulty ones. Via the replication
experiment we demonstrate that the ranking of classes proposed by SPEQTRA is signifi-

10

2.2. HEURISTICS UNDER INVESTIGATION

Ranking of classes

Classes
with sequences

Classes
with sequences

SPEQTRA
(Closed itemset mining)

Instrumented Class 1

faulty program

SPEQTRA

(Jaccard coefficient)

Classes with
object traces

Passing tests

Run each test |r ! :
case L ' :
Failing tests ' : Classes
H ' SPEQTRA I
1 ! (Cosed tomset mining) |1 I
. | cl : '

AMPLE Class 2

(Sliding window)

Class N

Ranking of classes

Class 1

lasses with Class 2

object traces

:

i Collecting traces | | From traces to Sequences | | Ranking classes

Classes
with sequences

AMPLE

(Sliding window) Class N

Figure 2.1: Overview of the two heuristics showing three steps (i) Collecting tracing, (ii)
Collecting class sequences, and (iii) Ranking classes

cantly better than the one of AMPLE: we can immediately pinpoint the faulty class in 56%
of all test runs; while on average 12% of the executed classes (5% of all classes) must be
inspected to find the location of the fault. Moreover, for 70% of the faults, SPEQTRA has
at most one false positive whereas for AMPLE this happens for 59% of the faults.

This chapter is structured as follows. We explain the two heuristics under investi-
gation in Section 2.2. Next, we describe the way we set up our replication experiment,
including the particular details about the NanoXML case in Section 2.3. Then the bulk of
the chapter is contained within Section 2.4, where we show the results of the comparison
including some anecdotal evidence from NanoXML. We list the related work, showing
other research on dynamic analysis within a software evolution context in Section 2.5,
followed by a discussion on the threats to validity in Section 2.6. Finally, Section 2.7 sum-
marises our findings and lists the contributions.

2.2 HEURISTICS UNDER INVESTIGATION

In this section we give a detailed explanation of the two heuristics under investigation.
First, we provide some background information regarding spectrum based fault localisa-
tion which is the basis for the two heuristics (Section 2.2.1). Then we contrast the two
heuristics depicted in a Figure 2.1 showing where they are the same (i.e. collecting traces
per object — Section 2.2.2) and where they differ (creating sequences of method calls —
Section 2.2.3; the similarity coefficient used to rank the corresponding fault locations —
Section 2.2.4).

11

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

2.2.1 Spectrum Based Fault Localisation

AMPLE and SPEQTRA both are instances of the class of spectrum based fault local-
isation heuristics [13]. Such heuristics discover statistical coincidences between system
failures and the activity of the different parts of a system. All these heuristics create a so-
called program spectrum, which is a matrix where each column corresponds to a program
entity (e.g. statement, block, sequence of method calls) and rows represent a particular
test run. For each test run the corresponding column for program entity is marked as 1
(executed) or 0 (not executed). Alongside the program spectrum, the heuristic also cre-
ates an error vector which is a column where a cell is marked as 1 if the test run failed
or 0 if the test was a success. Next, the error vector is compared against all columns in
the program spectrum using a particular similarity coefficient; the column which is most
similar to the error vector is then the program entity which most likely contains the fault.

2.2.2 Collecting Traces

AMPLE and SPEQTRA use sequences of method calls as the program entities which
are represented in each column of the fault spectrum matrix. Both heuristics group the
outgoing method calls according to the following scheme. Let O = {01, 02, ..., 0, } be the
set of object instances of the class C' and T' = {t1,t2, ..., t,} be the set of object traces
of class C, where t; represents the trace of outgoing method calls by the object 0;. By
outgoing method calls we mean an object calling a method of another object. For instance
if we have an object 0; with a method m1() and hit method hosts a call to method n1()
belonging to an object o9, the collected outgoing method call for o7 is m1().

Two objects 0, and o2 of a class C' may have following traces of method calls (Equa-
tions 2.1 and 2.2):

mi,mi,my,mo, Mz, M3,
tl_{ 1,171 1, 112 2, 113 } (21)

miy,myi,ma,MmMz,M3
tQ = {ml, my, m1} (22)

AMPLE and SPEQTRA group all such object traces for the corresponding class C which
has trace set T' (Equation (2.3)).

{mi, m1,m1, ma, ma, ms,
T = m17m17m27m27m3}r (2'3)

{m17m17m1}

12

2.2. HEURISTICS UNDER INVESTIGATION

2.2.3 From Traces to Class Sequences

Traces of outgoing method calls can grow to millions of method calls per object [44].
To reduce these traces AMPLE and SPEQTRA each apply a different technique to arrive
at what we call Class Sequences for the remainder of the chapter.

AMPLE — Sliding Window. AMPLE slides a window of fixed size over the trace to
create a list of class sequences. From the previous example, if we fix the window size as
2 and slide it over the object traces in Equation (2.3) we obtain the set of class sequences
in Equation (2.4)

Cy = { {{m17m1}7{m13m2}7{m27m2}a } (2.4)

{ma,m3}, {ms,mi}}

SPEQTRA —Frequent Sequences. To avoid the arbitrary upper limit imposed by the
size of the sliding window, SPEQTRA incorporates the frequently appearing sequences
adopting an algorithm named closed itemset mining [23]. Given the set of object traces T’
of class C, we define:

o X —itemset— a set of method calls.

e 0(X) —support of X— the number of traces of T that contain this itemset X.

e minsup —minimum support of X— a threshold used to tune the number of re-
turned itemsets.

e frequent itemset — an itemset X is frequent when o(X) > minsup.

o closed itemset — a frequent itemset X is closed if there exists no proper superset X’
whose support is same as the support of X (i-e. o(X') = o(X)).

From now on, we refer a closed itemset X as a frequent sequence or simply a sequence
of method calls. Adopting closed itemset mining in the context of fault localisation, we
fix minsup to 1 because those classes which only create one object (and thus one trace)
should be included in the program spectrum as well; this one call trace may be the one
which triggers the fault. However, we tune the algorithm in another way. The mining
algorithm also returns frequent sequences that comprise only one method call. Since we
are looking for faults caused by complex object interactions where objects must adhere
to a certain protocol, sequences should have at least a length of two.

From the previous example with input 7" (Equation (2.3)) and minsup = 1 the gener-
ated set of frequent sequences is:

CF = {{ml}){m17m37m2}} (2.5)
It can be observed that the sequences such as {ma}, {ms}, {m1,ma}, {m1,ms}, {ma, ms}

13

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

are notincluded in final set (Equation (2.5)), since there exists a super sequence {my, mg, ma}
with equal support. As SPEQTRA removes all frequent sequences of length 1, thus the
sequence set C'r (Equation (2.5)) is finally reduced into the set of Class Sequences Cg in
(Equation (2.6)).

Cs = {{m1,m3,ma}} (2.6)

2.2.4 Ranking Classes

Both AMPLE and SPEQTRA assign a weight W (X)) to each class sequence in C'4 and
Cs(Equation (2.4) and 2.6 respectively). Note that X refers to a sequence of method calls,
but there is a difference in that X is a chunk of fixed size in AMPLE whereas X is set of
frequent method calls in SPEQTRA.

AMPLE — AMPLE has defined its own weighting scheme based on a configuration of
a single failing test and several passing tests. Sequences in AMPLE are assigned a weight

between 0 and 1 using equation (2.7) [22].

@ if X not in failing test
W(X) = B(X) (2.7)
1 — == if X in failing test
Where 7 is the number of passing tests and k(X) is the number of passing tests that

include the sequence X.

SPEQTRA — We tested several weighting schemes to rank the classes. Ultimately, in
SPEQTRA, we opted for the Jaccard similarity coefficient (Equation (2.8)) adopted from
Chen et al. [45]:

o an(X)
W) = a11(X) + a1 (X) + a10(X) (2.8)

Where:

e a;1(X) = Number of failing tests in which sequenceX is found.
¢ a19(X) = Number of passing tests in which sequenceX is found.
e ap1(X) = Number of failing tests in which sequenceX is not found.

Weight per class. Both AMPLE and SPEQTRA take the average of all weights for all
sequences of a class and assign this weight to class C, as defined in Equation (2.9):

1 n
w(e) = > W(X) (2.9)
=1

where n is the number of sequences in the class and W (X;) is weight of a sequence as

14

2.3. EXPERIMENTAL SETUP

Table 2.1: NanoXML version details

Version Number of classes LOC Number of faults Number of tests

1 16 4334 7 214
2 19 5806 7 214
3 21 7185 10 216
5 23 7646 8 216

given by Equation (2.7) (AMPLE) or Equation (2.8) (SPEQTRA).

Finally, both heuristics rank all classes using their weights W (C'), where the one with
the highest weight is the most likely location of the fault.

23 EXPERIMENTAL SETUP

This chapter is set-up as a replication experiment (different heuristic & same data)
where we compare a new fault localisation heuristic named SPEQTRA against the state
of the art AMPLE. In what follows, we describe the way we set up our replication ex-
periment, including the particular details about the NanoXML case (Section 2.3.1). Next,
we provide the necessary practical details about the mechanics of the experiment so that

other researcher can replicate our findings (Section 2.3.2)
2.3.1 Replication Case --- NanoXML

The original paper proposing the AMPLE heuristic demonstrated its effectiveness on
a small but representative project named NanoXML [22]. NanoXML is a non-validating
XML parser written in Java. Its source code and documentation are available in the

Software-artifact Infrastructure Repository?! [46].

NanoXML has five development versions (V1 ... V5) where the number of classes span
from 16 to 23 (Table 3.2). With the exception of version V4, all others have documented
faults that can be activated and exposed by the test suite. These versions (V1,V2,V3,V5)
—the ones we use for the experiment— have 32 faults (cumulatively). Each version is
shipped along with tests and test drivers. A test driver is a class that sets up multiple
tests by feeding them with the required input (e.g. read a XML file). The goal of these

Ihttp://sir.unl.edu/portal/index.php

15

http://sir.unl.edu/portal/index.php

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

test drivers is to trigger one and only one feature of the project.

We collect the traces of all faults by injecting one fault at a time and subsequently
running the test suite. Then for each test, we record the outgoing methods calls of the
created objects. It is important to note that, for each test (passing or failing), a separate
trace is maintained for each object. All the outgoing method calls of an object appear in
their own trace. Thus, two objects 0, and o, of the same class C' have independent traces
of method calls.

In the replication experiment we activate one fault at a time. Having 32 faults leads
to 32 distinct variants of NanoXML. Among these variants we picked only the ones that
generate at least one failing and one passing test for each test driver. Just like in the
original AMPLE experiment, this ensures that failing and passing tests are all related to
the same functionality. For each test driver, we group one failing test with all passing
tests, the set-up that is needed to reflect the set-up of AMPLE experiment. We repeat this
process for each failing test associated to that test driver. At the end of this process, we
end up with 18 variants of NanoXML and 347 combinations of failing and passing tests

used for our experiments.

Note that this set-up is not exactly the same as the one reported in the AMPLE paper be-
cause the version of NanoXML we downloaded from the Software-artifact Infrastructure
Repository has been changed. In the latest version, one fault is removed from V5 with a
note “since it is overly expressive it may not be representative of a pseudo-real fault". As a
consequence, the fault matrix also differs from the previous version. This is an inherent
risk with replication experiments and partially explains why we do not obtain the same
results reported in the AMPLE experiment [22].

2.3.2 Replication Details

AMPLE replication. When preparing for the replication experiment, we downloaded
the original binary of the AMPLE implementation. Due to hardware constraints, we were
unable to run this binary. Consequently, we implemented our own version of the algo-
rithm as reported in the original AMPLE paper [22]. We used the optimal settings for the

parameters of the heuristic, in particular we adopted a sliding window size of 8.

Aspect]. The object traces are collected by introducing logger functionality into the
NanoXML code via Aspect]?. More specifically, we use a method call join point with a
pointcut to pick out every call site. Each time a method call occurs, the aspect extracts
the caller object and adds a method entry to the object’s trace. The aspect is robust for
different threads that may be running within the java project, although this was irrelevant

2Aspect] http://eclipse.org/aspectj/

16

http://eclipse.org/aspectj/

2.4. RESULTS AND DISCUSSION

for the NanoXML case. All object traces belonging to same class appear together in a
HashMap maintained for each executed class.

Static Methods are Ignored. SPEQTRA, like AMPLE, also collects traces of method
calls invoked by objects of a class. Calls to static methods are not captured and do not
appear in the trace, hence cannot be identified as the location of the fault. For the par-
ticular replication of the NanoXML experiment this did not cause any problems however
this limitation must be taken into account for future replication.

Single failing test. For this experiment, we inject one fault into the program which
causes one or more tests to fail and several of them to pass. All these tests are executed
with same test driver. In principle, SPEQTRA is able to rank fault locations using all these
failing and related passing tests. However, since AMPLE is designed to work with only
one failing test we replicated the set-up to include the trace of a single failing test and one
or more passing tests.

Closed Itemset Mining. To avoid the arbitrary upper limit imposed by the size of the
sliding window, SPEQTRA incorporates the frequently appearing sequences adopting
an algorithm named closed itemset mining [23]. In particular, we used the implementation
provided by the library SPMF°.

Search Length. To compare the results of the two heuristics we use the so-called
search length as defined in the AMPLE experiment [22]. The search length counts how
many classes are placed atop of the faulty class in the ranking produced by the heuristic.
In that sense, it represents how many classes the developer has to examine before finding
the class containing the fault. The search length is zero whenever the faulty class is placed
as the first item in the ranking.

24 RESULTS AND DISCUSSION

To compare our results with AMPLE, we replicated AMPLE with a sliding window
size 8, which is the value for which AMPLE achieved the best performance. Following
the experimental set-up explained in Section 2.3, we obtained rankings for all the 347
combinations both with our implementation of AMPLE and SPEQTRA. Below we discuss
the results of both.

1. Our replication experiment confirmed the results reported in the original AMPLE
paper. There were some minor changes in the results, but these can be attributed
to the differences in the NanoXML version used in our experiment, in particular in
the tests accompanying the project.

3SPMF http://wuw.philippe-fournier-viger.com/spmf/

17

http://www.philippe-fournier-viger.com/spmf/

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

18

Table 2.2: Average Search Length in SPEQTRA and AMPLE

AMPLE SPEQTRA

2.07 1.20
§®) ~— — .] A -A
2 . i
S 81 .= &
(%) T e A
= O | & AT
> o -
qg i [|
B q‘_] A/I
o O
[@)) _
£ o |
$ o
o ~|= SPEQTRA
&’ o -4~ AMPLE

I I I
0 1 2 3 4 5 6 7 8 9
Search length

Figure 2.2: Search Length in SPEQTRA and AMPLE.

2. The average search length of all rankings in 347 test runs with both heuristics is
reported in Table 2.2. Here SPEQTRA has less average search length than sliding

window approach.

3. In 173 test runs out of 347, SPEQTRA outperforms AMPLE and has search length
less than AMPLE. In 140 test runs both SPEQTRA and AMPLE have same search
length, whereas in only 34 cases SPEQTRA has search length greater than AMPLE.

4. The plot of the cumulative of search length distribution in 347 test runs with both
heuristics is given in Figure 2.2. With SPEQTRA, the search length of 0 covers 56%
of faults, whereas with AMPLE it is only 40% of faults. Furthermore, the worst case
search length with SPEQTRA is 6 whereas with AMPLE it is 8.

2.4. RESULTS AND DISCUSSION

Listing 2.1: Code snippet with a fault in XMLElement class

1 public Enumeration enumerateAttributeNames() {

2 Vector result = new Vector();

3 Enumeration _enum = this.attributes.elements();

4 while (_enum.hasMoreElements()) {

5 XMLAttribute attr = (XMLAttribute) enum.nextElement();
6

7 result.addElement(attr.getFullName());

8 }

9 return result.elements();

10 }

2.4.1 Anecdotal Evidence

From the experiment we collected some anecdotal evidence highlighting the main
differences between the two approaches. Specifically the two differences, namely (i) the
effect of the sliding window and (ii) the impact of repetitive method calls (e.g. contained
inloops). In Listing 2.1, we see a piece of source code showing a fault in XMLElement class
at line 7 which was exercised by several unit tests. This resulted in three XMLElement
object traces generated by the failing test as shown in Listings 2.2, 2.3 and 2.4. Note that

for brevity, method parameters are not shown.

From these object traces in failing test, SPEQTRA generated three sequences of method
calls for class XMLElement . For brevity, we list the numbers in the sequences instead of
method calls. These numbers in the sequences represents the line numbers in Listing 2.2,
unless otherwise mentioned. The line number for the method is the very first entry of
the method in the trace. The first sequence was s1 = {1, 4, 21, 24, 5, 15, 7}, the methods
indicated by numbers 5 and 7 appear in Listing 2.3 at lines 5 and 7. The second sequence
was s2 ={1, 4, 13, 21, 24, 15} and the third sequence was s3 = {1, 4, 21, 24, 15}. These
sequences capture frequent method calls occurring in the traces and hence represent a
good abstraction of the traces. The three sequences have length 7, 6 and 5 respectively
and none of the sequence has repetitive method calls.

On the other hand, AMPLE generated 37 sequences for the class, each with repetitive
method calls. If we slide a window of size 8 over the trace in Listing 2.2, the first sequence
s1={1,2,3,4,5,6,7, 8} contains 5 repetitions for method XMLElement.findAttribute() and
three repetitions of method XMLAttribute.getFullName(). Likewise the second sequence
s2=1{2,3,4,56,7,8, 9} contains four times method XMLElement.findAttribute() and 4
times method XMLAttribute.getFullName(). As a consequence, the AMPLE heuristic fails
to locate the fault and it ranked the faulty class on position 6 whereas SPEQTRA could

pinpoint it exactly.

19

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

Listing 2.2: Failing trace of XMLElement object 1

XMLElement. findAttribute (String)
XMLElement. findAttribute (String)
XMLElement. findAttribute (String)
XMLAttribute . getFullName ()
XMLElement. findAttribute (String)
XMLAttribute . getFullName ()
XMLElement. findAttribute (String)
XMLAttribute. getFullName ()
XMLAttribute . getFullName ()
10 XMLElement. findAttribute (String)
11 XMLAttribute. getFullName ()
12 XMLAttribute. getFullName ()
13 XMLElement.getName ()
14 XMLElement. getName ()
15 XMLAttribute.getName()
16 XMLAttribute.getName()
17 XMLAttribute.getName ()

()

()

OO UTh WN -

18 XMLAttribute.getName

19 XMLAttribute.getName

20 XMLAttribute.getName()

21 XMLElement. getAttribute ()

22 XMLElement. findAttribute (String)
23 XMLAttribute. getFullName ()

24 XMLAttribute. getValue ()

25 XMLElement. getAttribute ()

26 XMLElement. findAttribute (String)
27 XMLAttribute.getFullName()

28 XMLAttribute.getFullName()

29 XMLAttribute. getValue ()

30 XMLElement. getAttribute ()

31 XMLElement. findAttribute(String)
32 XMLAttribute. getFullName ()

33 XMLAttribute. getFullName ()

34 XMLAttribute.getFullName()

35 XMLAttribute. getValue ()

There are however 34 situations where AMPLE was more accurate than SPEQTRA. We
use one fault injected in the class NonValidator to explain this difference. The failing test
and several of the passing tests generated the same trace for the only object of NonValidator.
In this case, SPEQTRA generated one sequence for the failing test and two sequences
for the passing tests, one of which also appeared in the failing test. As a consequence,
SPEQTRA ranked this class on position 4 whereas AMPLE could pinpoint it exactly. This
can be explained as, the Jaccard similarity coefficient (or any other coefficient used in
spectrum based fault localisation) assigns more weight to a sequence when it is present
more in failing tests and less in passing tests. Hence the sequence only present in passing
tests gets weight 0; the value 0 for numerator a11(X) in equation 2.8 evaluates the whole

equation to 0. The other sequence presented in failing test gets a lower weight due to its

20

2.5. RELATED WORK

presence in several passing tests; the higher value of denominator a;¢(X) in equation 2.8

decreases the value. Consequently, the weight of the class, which is average weight of

the two sequences, is also less.

Listing 2.3: Failing trace of XMLElement object 2

OO UT D WN -

XMLElement. findAttribute (String)
XMLElement. findAttribute (String)
XMLElement. findAttribute (String)
XMLAttribute . getFullName ()
XMLElement. findAttribute (String , String)
XMLAttribute . getName ()
XMLAttribute . getNamespace ()
XMLAttribute . getName ()
XMLAttribute . getName ()
XMLAttribute . getName ()
XMLAttribute . getName ()
XMLElement. getAttribute()
XMLElement. findAttribute (String)
XMLAttribute . getFullName ()
XMLAttribute . getValue ()
XMLElement. getAttribute()
XMLElement. findAttribute (String)
XMLAttribute . getFullName ()
XMLAttribute . getValue ()

Listing 2.4: Failing trace of XMLElement object 3

XMLElement . getName ()

2.4.2 Discussion

Based on this replication experiment, we conclude that SPEQTRA is significantly bet-
ter than AMPLE since:

1. The average ranking in SPEQTRA islower than AMPLE. This average suggests thata

developer has to search through, on average, 12% of 10.25 average executed classes
or 5% of all 23 classes. This is significantly better than AMPLE, where 20% of exe-
cuted classes or 9% of all classes need to be searched.

. A faulty class is placed first in the ranking (search length 0) for 56% of faults by
SPEQTRA whereas for AMPLE it happens only for 40% of the faults.

. For 70% of faults, there is atmost one false positive (search length 1) with SPEQTRA
whereas for AMPLE this happens for 59% of the faults.

21

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

25 RELATED WORK

In this section, we present related work on spectrum based fault localisation thus
immediately relevant for this replication experiment. Moreover, we also give references
to related work on dynamic analysis for program comprehension as this provides the
broader context for our research.

251 Spectrum Based Fault Localisation

Spectrum based fault localisation is an automated fault diagnosis technique based
on differences in program spectra of a program between passing and failing tests [13].
Spectrum based fault localisation techniques have been applied in many domains such
as localising the fault and ranking program statements [12], blocks [13], failure related
components [45] and —last but not least— classes [22].

Jones and Harrold used statement-hit spectra to rank statements of C programs ac-
cording to their likelihood to be at fault [12]. To visualize the ranking, they implemented
a tool — Tarantula — able to mark statements with colors that span from red (statement

likely at fault) to green (statement unlikely at fault).

Abreu et al. used blocks-hit spectra to rank the blocks in order of their likelihood to be
at fault [13]. Here the block is defined as C language statement where compound state-
ment (statements inside curly brackets) counts as a single statement. They compared the
performance of different similarity coefficients and their impact on diagnostic accuracy

of spectrum based fault localisation technique.

Chen et al. implemented the tool Pinpoint for tracing client requests in Internet service
environments. Pinpoint records the components involved in the service and whether or
not the request is satisfied [45]. The tool correlates the request failures to the components
that most likely caused the failure.

All previous papers detect the fault at different levels of granularity(e.g., statements,
blocks). However, none of them uses spectrum based fault localisation to identify faults
due to method call sequences. In the literature, the only two techniques able to localise
faults related to method call sequence are AMPLE and MCA-E. AMPLE is a tool, created by
Dallmeier et al. that traces method calls invoked by objects and collects call sequences of
the corresponding classes [22]. The outcome of the tool is a list of classes ranked accord-
ing to their likelihood to be at fault. MCA-E is a technique proposed by Tu et al. in order to
improve the regular spectrum based fault localisation techniques adopted in AMPLE [47].
Its outcome is a list of statements ranked according to their likelihood to be at fault. In
the first step, it computes the likelihood of classes to be at fault (suspiciousness) by taking
into account the difference of their method call sequences between passing and failing

22

2.5. RELATED WORK

tests. In the second step, the suspiciousness of classes is used together with their state-
ments to generate ranking of statements. One of the limitations of AMPLE and MCA-E
approaches is the adoption of a window of finite size that slides over the execution traces.
Such sliding a window is not efficient for computing the sequences since method calls
may stem from loops or may repeat in a trace resulting into sequences with repetitive
method calls which add overhead with little extra information. Furthermore, the num-
ber of sequences linearly increases as the size of the trace increases. With window size w
and n number of method calls in a trace, n sequences are possible. In this chapter, we
address the shortcomings related to the sliding window by mining the frequent method
call sequences. The sequence mining alleviates the arbitrary upper limit on the length of
the call sequence. It also optimises the computational power required to obtain the rank-
ing of classes as the mining algorithm limits the frequent sequences to closed ones: and
also the SPEQTRA removes one-length sequences, the number of SPEQTRA sequences
is far less than sliding a window over the trace.

It also optimises the computational power required to obtain the ranking of classes as
it generates far less sequences than sliding a window over the trace.

2.5.2 Program Comprehension

Discovering program invariants and specifications such as legal method call sequences
are common goals of research in program comprehension [41, 48, 49]. Such specifications,
achieved by means of dynamic analysis, are used for purposes including documentation,
learning the APT’s etc.

Ernst et al. implemented the tool Daikon to dynamically detect program invariants [48].
An invariant is defined as a property that is true at a particular program point or points.
Daikon runs an instrumented program over a series of test runs and records program
properties. At the invariant detection stage it starts with a list of hypothetical invariants
comparing them across all the traced properties of the program for all test runs. It im-
mediately discards the hypothetical invariant the moment it does not hold for a test run.
Finally, all the invariants that are validated across all test runs are reported. Daikon can
also be used to detect invariant violations in failing tests and as such may be used in a
similar set-up as what we report here.

Gabel and Su implemented OCD, a tool which traces method calls and, using a prede-
fined template as a model for specification inference, learns and enforces temporal speci-
fications over method call sequence [49]. The algorithm suffers from two limitations: (1)
the template limits the sequence to comprise only two method calls and (2) the sequences
inferred from a limited window size. The efficiency of the algorithm critically depends
on the window size. Experimenting with Eclipse and Ant, the tool detected a few anoma-

23

CHAPTER 2. LOCALISING FAULTS IN TEST EXECUTION TRACES

lies as violations of inferred sequences, though the anomalies did not result in program

crashes.

Pradel and Gross proposed a dynamic analysis technique to infer specifications of
correct method call sequences [41]. The technique focuses on object collaboration, namely
objects and method calls used together in the execution of a single method. By running
a software program, the technique traces method calls, computes object collaborations
and identifies patterns among these collaborations. From these patterns, the technique
infers the legal method call sequence in the form of finite state machines.

To certain extent, our research on SPEQTRA is complementary to the previous ones.
We use method call sequences of a class from passing tests, which can be assumed as
usage patterns of the program. On the other hand, the sequences in failing tests can be
considered as deviant behaviour.

2.6 THREATS TO VALIDITY

Following the template for case studies in [50], we discuss the threats to validity that

can affect our results.

Threats to external validity correspond to the generalizability of our experimental
results. Our study is limited to the object oriented system NanoXML. Although NanoXML
is small project, it represents a good testbed since it provides documented tests and faults
for replicating our study. Moreover, by using the same case study of Dallmeier et al. [22],
we were able to verify the impact of removing the sliding window and adopting different
similarity coefficients for mining faults in stack traces. Nevertheless, it is desirable to

replicate our findings using other projects.

Threats to internal validity concern confounding factors that can influence the ob-
tained results. Our approach leverages on the fault’s “ability” of changing the stack trace
generated by software execution. In that sense, we localise faults by pointing out the class
that has different method call sequences (in passing and failing tests) assuming that such
deviation is due to the fault. This assumption is a key-element in spectrum based fault lo-
calisation techniques based on method call sequences [22, 47] and our results confirm its
general validity. On the other hand, there are cases where it does not apply. In NanoXML
there is (only) one faulty class that cannot be localised —with our approach— since the
fault is caused by a variable accessed without any method call.

Threats to construct validity focus on how accurately the observations describe the
phenomena of interest. Our experiment relies on the correct identification of fault respon-
sible for test failure. From this point of view, we do not have threats to construct validity
since we inject one fault at the time. When the fault is injected, otherwise the test passes.

24

2.7. CONCLUSION

Threats to reliability validity correspond to the degree to which the same data would
lead to the same results when repeated. We describe all steps of our technique and pro-
vide references on any tool or library involved in the analysis. The case study we use is
publicly available in the Software-artifact Infrastructure Repository*, a repository created
for supporting rigorous controlled experimentation with program analysis and software

testing techniques [46].

2.7 CONCLUSION

In this chapter, we presented a novel spectrum based fault localisation heuristic (named
SPEQTRA) which used closed itemset mining to identify the characteristic method call
sequences and the Jaccard similarity coefficient to rank the classes according to the likeli-
hood of containing the fault. We compare our fault localisation heuristic with the state of
the art (AMPLE) and demonstrate on a small yet representative case (NanoXML) that the
ranking of classes proposed by SPEQTRA is significantly better than the one of AMPLE.
In particular, SPEQTRA can immediately pinpoint the faulty class in 56% of all test runs
(against 40% for AMPLE); while on average 12% of the executed classes must be inspected
to find the location of the fault (against 20% for AMPLE). From anecdotal evidence, we
deduce that the main reason why SPEQTRA performs better than AMPLE is due to closed
itemset mining: this filters out repetitive method calls (e.g. contained in loops) and avoids
the arbitrary upper limit imposed by the sliding window. Nevertheless, for a few faults
AMPLE provides a better ranking than SPEQTRA, caused by call sequences appearing in
both failing and many passing tests which reduced the weight of sequences.

Over the course of this research, we have made the following contributions:

o Replication Experiment. We conducted a replication of the AMPLE experiment per-
formed by Dallmeier et al. [22]. We used the same data (the NanoXML case provided
in the Software-artifact Infrastructure Repository [46]) and confirmed the numbers

provided in the original report.

o Alternative Heuristic. We proposed an alternative spectrum based fault localisation
heuristic (named SPEQTRA). We compared it against the results from AMPLE. We
demonstrate that the ranking of classes proposed by SPEQTRA is significantly bet-
ter than the one of AMPLE.

e Anecdotal Evidence. We collected some anecdotal evidence from the NanoXML case
interpreting the main differences between the two heuristics.

Fault localisation heuristics are particularly relevant in modern software engineering

owing to the increasing popularity of continuous integration. Continuous integration

4http://sir.unl.edu/portal/index.php

25

states that software engineers should merge their working copies with the main branch
several times a day using a suite of automated tests to verify the correctness of the build.
When one of the thousands of tests fails, the corresponding fault should be localised as
quickly as possible as development can only proceed when the fault is repaired. In that
sense our work shows that while the state of the art is rapidly advancing, it is worthwhile

to make improvements on research from a decade ago.

28 ACKNOWLEDGMENTS

This work is sponsored by (i) the Higher Education Comission of Pakistan under a
project titled “Strengthening of Univeristy of Sindh (Faculty Development Program)"; (ii)
the Institute for the Promotion of Innovation through Science and Technology in Flanders
through a project entitled “Change-centric Quality Assurance (CHAQ)” with number
120028.

26

CHAPTER

Fine-tuning Spectrum Based Fault

Localisation with Frequent Method Item Sets

ni Fine-tuning Spectrum Based Fault Localisation with Frequent
« Method Item Sets
Gulsher Laghari, Alessandro Murgia, and Serge Demeyer
In Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016), 274-285. Singapore, Singapore. September, 2016.
DOI: https://doi.org/10.1145/2970276.2970308.

This chapter was originally published in the Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE 2016).

ABSTRACT

Continuous integration is a best practice adopted in modern software development teams to iden-
tify potential faults immediately upon project build. Once a fault is detected it must be repaired
immediately, hence continuous integration provides an ideal testbed for experimenting with the
state of the art in fault localisation. In this chapter we propose a variant of what is known as
spectrum based fault localisation, which leverages patterns of method calls by means of frequent
itemset mining. We compare our variant (we refer to it as patterned spectrum analysis) against
the state of the art and demonstrate on 351 real faults drawn from five representative open source

java projects that patterned spectrum analysis is more effective in localising the fault.

https://doi.org/10.1145/2970276.2970308

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

3.1 INTRODUCTION

Continuous integration is an important and essential phase in a modern release engi-
neering pipeline [5]. The quintessential principle of continuous integration declares that
software engineers should frequently merge their code with the project’s codebase [34,
51]. This practice is helpful to ensure that the codebase remains stable and developers
can continue further development, essentially reducing the risk of arriving in integration
hell [52]. Indeed, during each integration step, a continuous integration server builds the
entire project, using a fully automated process involving compilation, unit tests, integra-
tion tests, code analysis, security checks, When one of these steps fails, the build is
said to be broken; development can then only proceed when the fault is repaired [35, 36].

The safety net on automated tests, encourages software engineers to write lots of tests
— several reports indicate that there is more test code than application code [38, 39, 53].
Moreover, executing all these tests easily takes several hours [40]. Hence, it should come
as no surprise that developers defer the full test to the continuous integration server in-
stead of running them in the IDE before launching the build [54]. Occasionally, changes
in the code introduce regression faults, causing some of the previously passing test cases
to fail [55]. Repairing a regression fault seems easy: the most recent commits should con-
tain the root cause. In reality it is seldom that easy [36]. There is always the possibility of
lurking faults, i.e. faults in a piece of code which are revealed via changes in other parts
of the code [56]. For truly complex systems with multiple branches and staged testing,
faults will reveal themselves later in the life-cycle [57, 58].

Luckily, the state-of-the-art in software testing research provides a potential answer
via spectrum based fault localisation. These heuristics compare execution traces of failing
and passing test runs to produce a ranked list of program elements likely to be at fault. In
this chapter, we present a variant which leverages patterns of method calls by means of
frequent itemset mining. As such, the heuristic is optimised for localising faults revealed
by integration tests, hence ideally suited for serving in a continuous integration context.

In this chapter, we make the following contributions.

1. We propose a variant of spectrum based fault localisation (referred to as patterned
spectrum analysis in the remainder of this chapter) which leverages patterns of method
calls by means of frequent itemset mining.

2. We compare patterned spectrum analysis against the current state-of-the-art (referred
to as raw spectrum analysis in the remainder of this chapter) using the Defects4J
dataset [59].

3. The comparison is inspired by a realistic fault localisation scenario in the context of
continuous integration, drawn from a series of discussions with practitioners.

28

3.2. STATE OF THE ART

Table 3.1: An Example Test Coverage Matrix and Hit-Spectrum

= % Failing tests Passing tests
g s 8 8 er €p nr Tp
E B
oo
DE . tm tmgt ... tn
unit; Xi1 .- Xim Ximt1 ---Xion T X emi1 Xig me—ep (n—m)—ep
t; denotes i), test case X ; takes the binary value 0 or 1
Table 3.2: Popular Fault Locators
Faul Locator Definition
°f
er + n
Tarantula [12] o7 ! ! %
6f + "f + ep + np
e
Ochiai [13] L ‘
Vier +nyp)es + ep)
ef
x ef + nf ef ep
T [60] °f ep X mazx er +mny’ep, + ny
Ef =+ nf ep =+ np
Naish2 [17] er — S E—
ais f P

The remainder of this chapter is organised as follows. Section 3.2 lists the current state-
of-the-art. Section 3.3 presents a motivating example, followed by Section 3.4 explaining
the inner details of our variant. Section 3.5 describes the case study set-up, which nat-
urally leads to Section 3.6 reporting the results of the case study. After a discussion of
potential improvements in Section 3.7, and the threats to validity in Section 3.8, we come
to a conclusion in Section 3.9.

3.2 STATE OF THE ART

This section provides an overview of the current state-of-the-art in spectrum based
fault localisation. In particular, we sketch the two dimensions for the variants that have
been investigated: either the granularity (statement — block — method — class) or the
fault locator function (Tarantula, Ochiai, T*, and Naish2). We also explain what is com-
monly used when evaluating the heuristics: the evaluation metric (Wasted Effort) and the
available benchmarks and datasets. Finally, we list some common applications of fault

29

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

localisation, which heavily influences the way people assess the effectiveness in the past
research.

Automated Fault Localisation. To help developers quickly locate the faults, there ex-
ist two broad categories of automated fault localisation heuristics: (1) information retrieval
based fault localisation [7, 8, 9, 10], and (2) spectrum based fault localisation [11, 12, 13,
60, 61]. Both of these categories produce a ranked list of program elements, indicating
the likelihood of a program element causing the fault. While the former uses bug reports
and source code files for analysis, the later uses program traces generated by executing
failing and passing test cases. Since spectrum based fault localisation heuritsics only
require traces from test runs— readily available after running the regression test suite—
these heuritics are ideally suited for locating regression faults in a continuous integration

context.

Spectrum based fault localisation is quite an effective heuristic as reported in sev-
eral papers [12, 13, 60, 61]. Sometimes other names are used, namely coverage based fault
localisation [62] and statistical debugging [63]. To understand how spectrum based fault
localisation heuristics work, there are three crucial elements to consider: (1) the test cov-
erage matrix; (2) the hit-spectrum; and the (3) fault locator. We explain each of them
below.

1. All spectrum based fault localisation heuristics collect coverage information of the
elements under test in a test coverage matrix. This is a matrix, where the rows corre-
spond to elements under test and the columns represent the test cases. Each cell in
the matrix marks whether a given element under test is executed (i.e. covered) by
the test case (marked as 1) or not (marked as 0).

2. Next, this test coverage matrix is transformed into the hit-spectrum (sometimes also
called coverage spectrum) of a program. The hit-spectrum of an element under test
is tuple of four values (ey, e,, ny, n,). Where ey and e, are the numbers of failing
and passing test cases that execute the element under test and ny and n, are the
numbers of failing and passing test cases that do not execute the element under test.
Table 3.1 shows an example test coverage matrix and spectrum.

3. Finally, the heuristic assigns a suspiciousness to each element under test by means
of a fault locator. This suspiciousness indicates the likelihood of the unit to be at fault.
The underlying intuition is that an element under test executed more in failing tests
and less in passing tests gets a higher suspiciousness and appears at top position
in the ranking. Sorting the elements under test according to their suspiciousness
in descending order produces the ranking. Many (if not all) variants of spectrum
based fault localisation create a new fault locator; Table 3.2 gives an overview of the

most popular ones.

30

3.2. STATE OF THE ART

Granularity. Other variants of spectrum based fault localisation concern the choice
of the elements under test. Indeed, spectrum based fault localisation has been applied at
different levels of granularity, including statements [11, 12, 64, 65, 66], blocks [13, 16, 67, 68,
69], methods [60, 61, 70], and classes [22, 30]. The seminal work on spectrum based fault
localisation started off with statement level granularity [11]. As a result, most of the early
research focussed at statement level, sometimes extended to basic blocks of statements.
The effectiveness at the method level has been investigated in only a few cases and then
even as part of a large-scale comparison involving several levels of granularity [60, 61, 70].

Today, the space of known spectrum based fault localisation heuristics is classified
according to two dimensions: the granularity (statement — block — method —
class) and the fault locator function (Tarantula, Ochiai, T*, and Naish2). In this
chapter, we explore the hit-spectrum as a third dimension. We expand the four
tuple (ef, ep, n¢, ny) so that ey and e, incorporate patterns of method calls we
extracted by means of frequent itemset mining.

In the remainder of this chapter we refer to the current state of the art as raw
spectrum analysis, while our variant will be denoted with patterned spectrum
analysis.

Evaluation metric: wasted effort. Fault localisation heuristics produce a ranking of
elements under test; in the ideal case the faulty unit appears on top of the list. Several
ways to evaluate such rankings have been used in the past, including relative measures in
relation to project size, such as the percentage of units that need or need not be inspected
to pinpoint the fault [60]. Despite providing a good summary of the accuracy of a heuris-
tic, absolute measures are currently deemed better for comparison purposes [60, 61, 71].
Today, the wasted effort metric is commonly adopted [60, 61, 70]. Consequently, we will
rely on the wasted effort when comparing raw spectrum analysis against patterned spectrum
analysis. (The exact formula for wasted effort is provided in Section 3.5 — Equation (3.8)).

Dataset. The early evaluations on the effectiveness of raw spectrum analysis heuristics
were done by means of small C programs, taken from the Siemens set and Space [72].
Despite having industrial origins, the faults used in the experiments were manually seeded
by the authors [11, 73]. The next attempt at a common dataset for empirical evalua-
tion of software testing and debugging is the Software-Artifact Infrastructure Repository
(SIR) [46]. Unfortunately, most of the faults in this dataset are manually seeded as well.
Consequently, Dallmeier and Zimmermann created the iBugs dataset containing real
faults drawn from open source Java projects [74]. iBugs contains 223 faults all accom-
panied with at least one failing test case to reproduce the fault. The last improvement on

31

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

fault datasets is known as Defects4d [59]. Defects4J has a few advantages over iBugs: all
the faults in Defects4J are isolated— the changes in V¥, for corresponding V., purely
represent the bug fix. Unrelated changes —such as adding features or refactorings— are
isolated. Defects4J also provides a comprehensive test execution framework, which ab-
stracts away the underlying build system and provides a uniform interface to common
build tasks — compilation, test runs, etc.... To the best of our knowledge, the Defects4J
has not yet been used for evaluating raw spectrum analysis. Hence, we will adopt the
Defects4J dataset for our comparison.

The current state of the art relies on wasted effort to evaluate fault localisation
heuristics mainly via the SIR and iBugs datasets. When comparing raw spec-
trum analysis against patterned spectrum analysis, we rely on wasted effort as
well, yet adopt the more recent Defects4d dataset.

Applications. In the initial research papers, the main perspective for spectrum based
fault localisation was to assist an individual programmer during debugging [11, 12, 13,
16, 64, 66, 67, 68, 69]. The typical scenario was a debugging window showing not only
the stack trace but also a ranked list of potential locations for the fault, hoping that the
root cause of the fault appears at the top of the list. This explains why the accuracy of
these heuristics was mainly evaluated in terms of percentage of code that needs to be
inspected. Recently, another application emerged: automated fault repair [55, 75, 76]. The
latter techniques repair a fault by modifying potentially faulty program elements in brute-
force manner until a valid patch —i.e. one that makes the tests pass— is found. The first
step in automated repair is fault localisation, which in turn resulted in another evaluation
perspective, namely whether it increases the effectiveness of automated fault repair [77].

The two commonly used applications for fault localisation are debugging and au-
tomated fault repair. Up until now, continuous integration has never been con-
sidered. We will present the implications of broken builds within continuous
integration in Section 3.3.

3.3 MOTIVATING SCENARIO

Since we propose continuous integration as a testbed for validating patterned spec-
trum analysis, it is necessary to be precise about what exactly constitutes a continuous

integration tool and what kind of requirements it imposes on a fault localisation heuris-

32

3.3. MOTIVATING SCENARIO

tic. As commonly accepted in requirements engineering, we specify the context and its
requirements by means of a scenario. The driving force underlying the scenario is the
observation that if a build is broken, it should be repaired immediately hence the root
cause should be identified as quickly as possible.

Note that at a first glance this scenario may seem naive. Nevertheless, it is based
on a series of discussions with software engineers working with the agile development
process SCRUM and who rely on a continuous integration server to deploy their software
on a daily basis. The discussions were held during meetings of the steering group of the
Cha-Q project (http://soft.vub.ac.be/chaq/), where we confronted practitioners with
the scenario below and asked for their input on what a good fault localisation method
should achieve. Therefore, we can assure the reader that the scenario represents a real
problem felt within today’s software teams.

Prelude: GeoPulse GeoPulse! is an app which locates the nearest location of an exter-
nal heart defibrillator so that in case of an emergency one can quickly help an individual
suffering from a cardiac arrest. The software runs mainly as a web-service (where the
database of all known defibrillators is maintained), yet is accessed by several versions
of the app running on a wide range of devices (smart phones, tablets and even a mini-
version for smart watches).

Software Team. There is a 12 person team responsible for the development of the
GeoPulse app; 10 work from the main office in Brussels while 2 work from a remote
site in Budapest. The team adopts a SCRUM process and uses continuous integration to
ensure that everything runs smoothly. It’s a staged build process, where the build server
performs the following steps: (1) compilation; (2) unit tests; (3) static code analysis; (4)
integration tests; (5) platform tests; (6) performance tests; (7) security tests. Steps (1) —
(3) are the level 1 tests and fixing problems there is the responsibility of the individual
team members; steps (4) — (7) are the level 2 defence and the responsibility of the team.

Scene 1: Unit Testing. Angela just resolved a long standing issue with the smart-
watch version of the app and drastically reduced the response time when communicat-
ing with the smart-phone over bluetooth. She marks the issue-report as closed, puts the
issue-ID in the commit message and sends everything off to the continuous integration
server. A few seconds later, the lava-lamp in her cubicle glows orange, notifying a bro-
ken build. Angela quickly inspects the build-log and finds that one unit-test fails. Luck-
ily, the guidelines for unit tests are strictly followed within the GeoPulse team (unit-tests
run fast, have few dependencies on other modules and come with good diagnosing mes-
sages). Angela can quickly pinpoint the root cause as a missing initialisation routine in
one of the subclasses she created. She adds the initialiser, commits again and this time

1The name and description of the app is fictitious.

33

http://soft.vub.ac.be/chaq/

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

the build server finds no problems and commits her work to the main branch for further
testing during the nightly build. The lava-lamp turns green again and Angela goes to
fetch a coffee before starting her next work item.

Purpose. This scene illustrates the importance of the Level 1 tests and the role of unit
tests in there. Ideally, running the whole suite of unit tests takes just a few seconds and
if one of the unit tests fails, it is almost straightforward to locate the fault. Moreover, it
is also clear who should fix the fault, as it is the last person who made a commit on the
branch. Thus, fault localisation in the context of unit tests sensu stricto is pointless: the
fault is located within the unit by definition and the diagnosing messages combined with

the recent changes is usually sufficient to repair efficiently.

Scene 2: Integration Testing. Bob arrives in his office in the morning and sees that
the lava-lamp is purple, signifying that the nightly build broke. He quickly inspects the
server logs and sees that the team resolved 9 issues yesterday, resulting in 8 separate
branches merged into the main trunk. There are three seemingly unrelated integration
tests which fail, thus Bob has no clue on the root cause of the failure. During the stand-up
meeting the team discusses the status of the build, and then suspends all work to fix the
broken build. Team members form pairs to get rapid feedback, however synchronising
with Vaclav and Ivor (in the Budapest office) is cumbersome — Skype is not ideal for
pair programming. It takes the team the rest of the morning until Angela and Vaclav
eventually find and fix the root cause of the fault — there was a null check missing in the
initialisation routine Angela added yesterday.

Purpose. This scene illustrates the real potential of fault localisation during contin-
uous integration. Faults in integration tests rarely occur, but have a big impact because
they are difficult to locate hence difficult to assign to an individual. Moreover, software
engineers must analyse code written the day before and integration tests written by oth-
ers: the mental overhead of such context switches is significant. Finally, since these faults
block all progress, team members must drop all other tasks to fix the build.

Scene 3: Retrospective. At the end of the sprint, Alex —the SCRUM master of
the team- raises an issue during the retrospective meeting. He collected some
statistics from the last years of development and found out that they experienced
394 integration faults for the 132 sprints, thus on average 3 integration faults
per sprint. Consulting the issue database, he discovered that resolving one
such integration fault takes on average 3.5 working hours. Knowing that these
integration faults block all progress in the team, he estimates that broken builds
for integration tests cost the team +—1000 person hours per year (8 sprints per
year * 3 faults per sprint * 3.5 hours per fault * 12 persons). Thus the team spends

34

3.4. PATTERNED SPECTRUM ANALYSIS

just under 126 working days or —assuming 220 working days per year— 4% of
its capacity on fixing integration faults.

Purpose. This scene illustrates the impact of such integration faults on the
team productivity. Even if they occur rarely, the fact that it is an “all hands on
deck” situation implies that resolving them takes a lot of effort. Even a small
reduction in the time needed to fix an integration fault implies a significant gain
in team productivity.

Additional material that was excluded from the original paper due to space constraints.

3.3.1 Requirements

From the above scenario, we can infer a few requirements that should hold for a fault
localisation heuristic integrated in a continuous integration server.

Method Level Granularity. The seminal work on raw spectrum analysis (named Taran-
tula) was motivated by supporting an individual test engineer, and chose statement level
granularity [11]. However, for fault localisation within integration tests, method level
granularity is more appropriate. Indeed, the smallest element under test in object ori-
ented testing is a method [78]. This also shows in modern IDE, where failing tests and
stack traces report at method level. Last but not least, objects interact through methods,
thus integration faults appear when objects don’t invoke the methods according to the
(often implicit) protocol.

Top 10. A fault localisation heuristic produces a ranked list of program elements likely
to be at fault, thus the obvious question is how deep in the ranking the correct answer
should be to still be considered acceptable. In the remainder of the chapter we set the
threshold to 10, inspired by earlier work from Lucia et. al [68]. 10 is still an arbitrary
number but was confirmed to be a good target during our interviews with real develop-
ers.

Fault localisation is applicable for complex systems with multiple branches and
staged testing. Faults in integration tests in particular are very relevant: they
seldom occur, but when they do, they have a big impact on the team productivity.
Thus, to compare raw spectrum analysis against patterned spectrum analysis we
should treat integration tests differently than unit tests.

35

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

34 PATTERNED SPECTRUM ANALYSIS

As explained earlier, current raw spectrum analysis heuristics comprise several variants,
typically classified according to two dimensions: the granularity (statement — block —
method — class) and the fault locator function (Tarantula, Ochiai, T*, and Naish2). In
this chapter, we explore the hit-spectrum as a third dimension, incorporating patterns of
method calls extracted by means of frequent itemset mining.

Below, we explain the details of the patterned spectrum analysis variant. We run the
test suite and for each test case, collect the trace (Cf. Section 3.4.1), slice the trace into
individual method traces (Cf. Section 3.4.2), reduce the sliced traces into call patterns for
amethod (Cf. Section 3.4.3), calculate the hit-spectrum by incorporating frequent itemset
mining (Cf. Section 3.4.4), and finally rank the methods according to their likelihood of
being at fault (Cf. Section 3.4.5).

3.4.1 Collecting the Trace

We maintain a single trace per test case. When a test runs, it invokes methods in
the project base code. We intercept all the method calls originating from the base code
method. We do not intercept calls in test methods, since we assume that the test oracles
themselves are correct. The trace is collected by introducing logger functionality into the
base code via Aspect]?. More specifically, we use a method call join point with a pointcut
to pick out every call site. For each intercepted call, we collect the called method identifier,
caller object identifier, and the caller method identifier. These identifiers are integers
uniquely associated with a method name.

Listing 3.1: Code snippet for a sample method

1 public class A {

2 B objB;

3 C objC;

4 ...

5 public void collaborate() {
6 b.getData();

7 while(...) {

8 if(...)

9 c.getAttributes () ;

10 if(...)

11 c.setAttributes(...);
12 if (...)

13 c.processData(...);
14 }

15 b.saveData () ;

2http://www.eclipse.org/aspectj/

36

http://www.eclipse.org/aspectj/

3.4. PATTERNED SPECTRUM ANALYSIS

16
17 %

Table 3.3: A Sample Trace Highlighting Calls in Listing 3.1

Caller objectid Callerid? Callee id*

1 5 6
1 5 9
1 5 11
1 5 15
2 5 6
2 5 11
2 5 13
3 5 6
3 5 11
3 5 15

T caller id 5 indicates method collaborate() in Listing 2.1

¥ callee id is the line number in Listing 2.1

As an example, assuming the test case instantiates three objects of class A and calls
method collaborate() (Listing 3.1) for each instance. A sample trace in a test case, specif-
ically highlighting the method calls originating from the collaborate() method in List-
ing 2.1, is shown in Table 3.3. The three instances of class A are shown (id 1, 2, and 3)
which each received a separate call to collaborate(). The execution of collaborate() on ob-
jectid 1 resulted into a call to getData() (line 6), getAttributes() (line 9), setAttributes() (line
11), and finally saveData() (line 15). Execution of collaborate() on object id 2 and 3 results
in a slightly different calls.

The “caller object id” is the identifier of the caller object which calls the method, the
‘caller’” is the method from which the call is made and the ‘callee’ is the called method.
When a method is executed in a class context (static methods can be executed without

instantiating a class), there is no caller object, hence we mark the ‘object caller id” as —1.

Considering the intercepted call getData() (line 6), the “caller object id" is the id of the
class A object instantiated in the test case, the “caller id" is the id of method collaborate(),
and the “callee id" is the id of method getData(). In a similar manner, calls originating
from other methods such as method getData() of class B invoked from method collabo-

rate() (line 6) are recorded in the trace.

37

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

3.4.2 Slicing the Trace

Once a trace for a test case is obtained, we slice the trace into individual method traces.

Each sliced trace represents the trace for each executed method in the test case.

The sliced trace for amethod m() ina testcase T isrepresented asaset 7,,, = {t1,t2, ..., tn}
, where t; represents the method calls invoked from method m() through the same caller
object. If the method m() is static, the calls appear in a single trace for ‘caller object id” -1.

Referring to Table 3.3, t; = (6,9, 11, 15) for the calls of method collaborate() (id 5) with
caller object id 1, to = (6,11, 13) with caller object id 2, and t3 = (6,11, 15) with caller
object id 3. Therefore, the sliced trace 75 for method collaborate() (id 5) is as follows.

Ts = {(6,9,11,15),(6,11,13),(6,11,15)} 3.1)
3.4.3 Obtaining Call Patterns

We reduce the sliced trace 7, of a method m() coming from a test case 7 into a set of
call patterns St;, . To arrive at set of call patterns St , we adopt the closed itemset mining
algorithm [23]. Given the sliced trace 7,,, of method m() in a test case 7, we define:

o X —itemset— a set of method calls.

e o(X) —support of X¥— the number of ¢; in 7,, that contain this itemset X'.

e minsup —minimum support of X¥— a threshold used to tune the number of re-
turned itemsets.

e frequent itemset — an itemset X is frequent when o (X) > minsup.

o closed itemset — a frequent itemset X’ is closed if there exists no proper superset X"’
whose support is the same as the support of X (i-e. o(X’) = o(X)).

We refer to closed itemset A as a call pattern. We set minsup to 1 to include call patterns
for the methods executed with one object only or for those executed in a class context.

The set of call patterns Sr;, for method collaborate() (id 5) from sliced trace 75 (Equa-
tion (3.1)) is as follows.

St = {{6,9,11,15},{6,11,13},{6, 11,15}, {6,11}} (3.2)
3.44 Calculating the Hit-Spectrum

Unlike raw spectrum analysis, where there is a single test coverage matrix per program,
patterned spectrum analysis creates a test coverage matrix for each executed method. In

the raw spectrum analysis, a row of test coverage matrix corresponds to a method, which

38

3.4. PATTERNED SPECTRUM ANALYSIS

is a program element per se, and the hit-spectrum (e, e, n¢, np) indicates whether or
not the method is involved in test cases. In patterned spectrum analysis, there is a separate
test coverage matrix for each method and a row corresponds to a call pattern (itemset
X) of the method. Here the call pattern (&) is not a program element anymore. The hit-
spectrum (ey, e,, Ny, n,) of X not only indicates whether or not the method is involved
in a test case, but also summarises its run-time behaviour.

The call patterns of a method m() in patterned spectrum analysis are obtained by run-
ning the set of failing test cases (denoted as Tr) and the set of passing test cases (de-
noted as Tp). We obtain a set of call patterns S,,, (Equation (3.3)) for each method m() —
which is the union of (i) the call patterns of a method resulting from the failing test cases
(87, € Tr) and (ii) the call patterns resulting from the passing test cases (S7,, € Tp).

S = {X|X ESTm ANTe TF}U{X|X ESTM A TGTP} (3.3)

The set S,,, (Equation (3.3)) is used to construct the test coverage matrix for a method.

As an example, consider the set of call patterns for Sr; (Equation (3.2)) of the method
collaborate(). Assuming, this call pattern results from a failing test case it will end up in
T € Tr. However, the same method collaborate() is also executed in a passing test case

(i-e 7 € Tp) and will result in another set of call patterns, shown in Equation (3.4).

St = {{6,11,13},{6,11,15},{6,11}} (3.4)

Then, the call pattern set S5 for the method collaborate() becomes the union of Equa-
tion (3.2) and Equation (3.4).

S; ={{6,9,11,15},{6,11,13},{6,11,15},{6,11}} (3.5

The hit spectrum is then calculated for each call pattern in the call pattern set which
ultimately results in a test coverage matrix for each method. As an example, we show the

test coverage matrix for collaborate() in Table 3.4.
3.4.5 Ranking Methods

Based on the test coverage matrix of call patterns for each method, each pattern in
the call pattern set S,,, (Equation (3.3)) gets a suspiciousness score. This suspiciousness
is calculated by using a fault locator [13, 60, 61]. Then, we set the suspiciousness of the
method as the maximum suspiciousness of its constituting patterns.

Suspiciousness per call pattern. Each call pattern X € S, (Equation (3.3)) gets a

39

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

Table 3.4: An Example Test Coverage Matrix for Method collaborate()

Failing tests Passing tests

(T € Tr) (T €Tp)
Call pattern F P ef(X) ep(X) mp(X) my(X) w(X)

X
t to

{6,9,11,15} 1 0 1 0 0 1 1.0

{6,11,13} 1 1 1 1 0 0 0.7

{6,11,15} 1 1 1 1 0 0 0.7

{6,11} 1 1 1 1 0 0 0.7

suspiciousness W (X) calculated with a fault locator. In principle, any fault locator can be
chosen from the literature. However, for our comparison purpose we tested all four fault
locators mentioned in Table 3.2 in patterned spectrum analysis and Ochiai (Equation (3.6))
came out as the best performing one. For our running example, the suspiciousness W (X)

for each call pattern of method collaborate() is given in Table 3.4.

W(X) = ef(X) ' 3.6
) V{(er(X) +np (X)) * (e (X) + e,(X)) GO

Suspiciousness per method. Each method m() gets a suspiciousness W (m) which is
the suspiciousness of the call pattern A" with the highest suspiciousness (Equation (3.7)).
We choose the maximum (instead of average) for the suspiciousness score because the
technique is looking for exceptional traces: one unique and highly suspicious pattern is
more important than several unsuspicious ones. Those methods without call patterns
set have suspiciousness 0. The suspiciousness for method collaborate() W (5) in our run-
ning example is 1.0, which is the suspiciousness of the call pattern ({6, 9,11, 15})— with
highest suspiciousness (Table 3.4).

W(m) = max (W(X)) (3.7)

XeSm

Ranking. Finally, a ranking of all executed methods is produced using their suspi-
ciousness W(m). The suspiciousness of the method indicates its likelihood of being at
fault. Those methods with the highest suspiciousness appear a the top in the ranking.

40

3.5. CASE STUDY SETUP

3.5 CASE STUDY SETUP

Given the current state of the art (referred to as raw spectrum analysis) and the variant
proposed in this chapter (referred to as patterned spectrum analysis), we can now compare
the effectiveness of these two heuristics from the perspective of a continuous integration
scenario. We give some details about the dataset used for the comparison (Defects4J),
the evaluation metric (Wasted Effort), to finish with the research questions, and protocol
driving the comparison.

Dataset. We use 351 real faults from 5 open source java projects: Apache Commons
Math, Apache Commons Lang, Joda-Time, JFreeChart, and Google Closure Compiler.
The descriptive statistics of these projects are reported in Table 3.5. These faults have been
collected by Just et. al. into a database called Defects4J® (a database of existing faults
to enable controlled testing studies for Java programs) [59]. The database contains meta
info about each fault including the source classes modified to fix the fault, the test cases
that expose the fault, and the test cases that trigger at least one of the modified classes.
Although, the framework does not explicitly list the modified methods, we could reverse
engineer those by means of the patches that come with the framework. Note that we
excluded 3 faults of Apache Commons Lang, 2 faults of Apache Commons Math, and 1
fault of Joda-Time since the fault was not located inside a method.

Unfortunately, the Defects4J dataset does not distinguish between unit tests or inte-
gration tests. As argued in the Scenario (Section 3.3), this is a crucial factor when as-
sessing a fault localisation heuristic in a continuous integration context. We, therefore,
manually inspected a sample of test methods and noticed that four projects (Apache Com-
mons Math, Apache Commons Lang, Joda-Time, and JFreeChart) mainly contain unit
tests: they have a small (often empty) set-up method, and test methods contain only a
few asserts. One project however (Closure Compiler) relies on integration tests. The test
cases there, are a subclass of CompilerTestCase that defines a few template methods, which
are the entry point to several classes in the base code of the project.

To corroborate this manual inspection, we calculated the number of methods trig-
gered in each fault spectrum analysis. The assumption here is that integration tests exer-
cise several methods in various classes, consequently the fault spectrum analysis should
trigger many methods as well. Thus, projects which gravitate towards integration testing
should trigger many methods while projects gravitating towards unit tests should trig-
ger far fewer. The results are shown in the last two columns (¢ and o) of Table 3.5; listing
the average and standard deviation per project respectively. The high number of . for
the Closure project is an indication that the Closure tests exercise a lot of the base code,
yet the high standard deviation o signals the presence of unit tests as well. On the other

Shttp://defects4j.org

41

http://defects4j.org

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD

ITEM SETS

Table 3.5: Descriptive Statistics for the Projects Used in Our Experiments — Defects4J

Project # of Bugs Source KLoC Test KLoC # of Tests Age (years) # Methods triggered (ut) # Methods triggered (o%)
Math! 106 85 19 3,602 11 153.1 140.8
Lang? 65 22 6 2,245 12 89.3 55.2
Time? 27 28 53 4,130 11 586.0 209.5
Chart* 26 96 50 2,205 7 306.9 407.5
Closure® 133 90 83 7,927 5 2043.0 1228.9
+ Average number of methods triggered by the Spectrum based fault localisation—— § Standard deviation
(*) Apache Commons Math — http: //commons.apache.org/math (%) Apache Commons Lang — http://commons.apache.org/lang

(®) Joda-Time — http://joda.org/joda-time (*) JFreeChart — http://jfree.org/jfreechart

(°) Google Closure Compiler — http://code.google.com/closure/compiler/

42

http://commons.apache.org/math
http://commons.apache.org/lang
http://joda.org/joda-time
http://jfree.org/jfreechart
http://code.google.com/closure/compiler/

3.5. CASE STUDY SETUP

hand, the low number of 1 for the other project hints at mostly unit tests, yet Chart has
a standard deviation o of 407 (compared to an average of 306), indicating a few outlier
tests which cover a lot of the base code.

The Defects4J dataset does not distinguish between unit tests or integration
tests. However, one project (Closure Compiler) gravitates towards integration
tests. Therefore, the results of the Closure Compiler should serve as circumstantial
evidence during the comparison.

Wasted Effort. As mentioned earlier, we compare by means of the wasted effort metric,
commonly adopted in recent research [60, 61, 70]. The wasted effort indicates the number
of non-faulty methods to inspect in vain before reaching the faulty method.

wasted effort = m + (n +1)/2 (3.8)

Where

o m is the number of non-faulty methods ranked strictly higher than the faulty method;

e 1 is the number of non-faulty methods with equal rank to the faulty method. This
deals with ties in the ranking.

The comparison is driven by the following research questions.

RQ1. Which ranking results in the lowest wasted effort: raw spectrum analysis or patterned
spectrum analysis?

Motivation. This is the first step of the comparison; assessing which of the two fault
localisation methods provides the best overall ranking.

RQ2. How often do raw spectrum analysis and patterned spectrum analysis rankings result in
a wasted effort < 10?

Motivation. Based on the scenario (Section 3.3), we investigate how many times the
location of the fault is ranked in the first 10 items.

RQ3. How does the number of triggered methods affect the wasted effort of raw spectrum analysis
and patterned spectrum analysis?

Motivation. Again, based on the scenario (Section 3.3) we gauge the impact of integra-
tion tests. The number of methods triggered by the fault spectrum analysis acts as
a proxy for the degree of integration tests in the test suite.

Fault Locator. One dimension of variation in spectrum based fault localisation is the
fault locator; Table 3.2 lists the most popular ones. As explained in Section 3.4.5, for com-
parison purpose we use Ochiai for patterned spectrum analysis. However, for the optimal

43

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

Table 3.6: Naish within Raw Spectrum Analysis vs. Tarantula, Ochiai and T*

Faul Locator < > =

Tarantula 50 (38%) 8 (6%) 75 (56%)
Ochiai 46 (35%) 6 (5%) 81 (61%)

T 20 (15%) 4 (3%) 109 (82%)

configuration of raw spectrum analysis, we actually tested all four fault locators (Table 3.2).
Naish2 performed the best on the Defects4J dataset with method level granularity as can
be seen in Table 3.6. There, we compare the wasted effort of Naish2 against the wasted
effort of other fault locators, using the 133 defects in the Closure project. For most defects,
Naish2 results in a better or equal ranking; only for a few defects is the ranking with other
locators better. For space reasons we do not show the comparison on other projects, but
there as well Naish2 was the best. Hence, we choose Ochiai for patterned spectrum analysis

and Naish?2 for raw spectrum analysis in the case study.

Protocol. To run the fault spectrum analysis, we check out a faulty version (Vyqui:) for
each project. Then we run the actual spectrum based fault localisation for all relevant test
cases, i.e. all test classes which trigger at least one of the source classes modified to fix
the fault as recorded in the Defects4J dataset. Given the continuous integration context
for this research, this is the most logical way to minimise the number of tests which are
fed into the spectrum based fault localisation. Note that this explains why the number of
methods triggered by a fault spectrum is a good indicator for the integration tests; since
the tests are chosen such that they cover all changes made to fix the defect.

3.6 RESULTS AND DISCUSSION

In this section, we address the three research questions introduced in Section 3.5. This
allows for a multifaceted comparison of the effectiveness of patterned spectrum analysis

against the state of the art raw spectrum analysis.

RQ1. Which ranking results in the lowest wasted effort: raw spectrum analysis or patterned

spectrum analysis?

To determine the best performing heuristic, we plot the wasted effort for all of the
faults for both heuristics. To allow for an easy exploration of the nature of the difference,
we sort the faults according to the wasted effort of raw spectrum analysis and plot the

44

3.6. RESULTS AND DISCUSSION

Table 3.7: Comparing Wasted Effort: Patterned Spectrum Analysis vs Raw Spectrum
Analysis

Project < > = Total
Math 69 (66%) 22 (21%) 13 (13%) 104
Lang 36 (58%) 14 (23%) 12 (19%) 62
Time 16 (62%) 727%) 3 (12%) 26
Chart 16 (62%) 7 (27%) 3 (12%) 26

Closure 101 (76 %) 30 (23 %) 2 (2%) 133

Total 238 (68 %) 80 (23 %) 33 (9%) 351

wasted effort for patterned spectrum analysis accordingly. The result can be seen in (Figures
3.1a, 3.1b, 3.1¢, 3.1d, and 3.1e). Next, we count all the faults for which the wasted effort
(in patterned spectrum analysis) is strictly less (<), strictly more (>), or the same (=) and
list the absolute numbers per project (See Table 3.7).

To illustrate how the rankings of the heuristics differ, we inspect fault 40 of the Closure
project where the wasted effort for patterned spectrum analysis is 0.5 (the faulty method is
ranked first), while for raw spectrum analysis the wasted effort is 183. This is due to the fact
that the faulty method has a call pattern which is unique in all failing test cases, hence is
easily picked up by patterned spectrum analysis. On the other hand, just marking whether

Table 3.8: Number of Faults where Wasted Effort is < 10

Patterned Spectrum Raw Spectrum
Project Analysis (PSA) Analysis (RSA) PSA-RSA Total

Math 73 (70%) 59 (57%) 14 104
Lang 55 (89%) 54 (87%) 1 62
Time 16 (62%) 14 (54%) 2 26
Chart 16 (62%) 13 (50%) 3 26
Closure 56 (42%) 30 (23%) 26 133
Total 216 (62%) 170 (48%) 46 351

45

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD

ITEM SETS

« Patterned Spectrum Analysis

+ Raw Spectrum Analysis

b - - b
.
© ©
< . re
- . =
¢ 27 . re
S
®
3
7 R4 o R
g e
. .
5 o
o | L o
& 8
|
* Patterned Spectrum Analysis .
5 -+ Raw Spectrum Analysis - b
< 2
S =Y
g g
o S
3 3
S [S=Y
8 &
S
% b (S
5 & Q
2
- —
=] ra
.
.
b . F o
.
5 . Ls
.. .
.
— . . . -
w 7 * - w
.
.
L .
- d etecesev ey . L~

46

(c) Time

wasted effort
351 551 751 951 1151 1401 1651 1901

151

wasted effort

wasted effort

101

76

51

26

101 151 201 251 301 351 401 451 501

51

+ Patterned Spectrum Analysis
+ Raw Spectrum Analysis

o B
geeeBeests
ped

Y
sogisiislaieee

(b) Lang

* Patterned Spectrum Analysis

_| + Raw Spectrum Analysis

R R I L

.
et o,

(d) Chart

1651 1901

1401

351 551 751 951

151

(e) Closure

Figure 3.1: The comparison plots of all the rankings in each Lang

1

76

51

26

101 151 201 251 301 351 401 451 501

51

3.6. RESULTS AND DISCUSSION

Table 3.9: Number of Triggered Methods vs. Wasted Effort

Bin PSAT RSA?
Q1 Median Q3 Q1 Median Q3

4-43 1.0 1.5 25 1.0 1.8 2.9
44-71 1.5 3.0 6.8 22 2.8 8.5
7291 1.5 28 9.1 24 52 13.0
92-134 1.5 2.8 115 15 3.8 17.6
137-202 1.5 3.2 9.1 1.5 3.2 15.5
204-397 2.0 8.0 235 35 20.0 73.0
423-892 1.9 50 514 35 9.0 7038

917-1262 5.8 140 38,5 104 263.0 511.6
1273-1721 8.2 20.8 56.4 339 97.8 203.1
1752-2464 2.5 11.2 409 124 50.0 196.0
2523-5825 5.0 240 775 11.0 115.5 561.1

or not the method is executed, is not discriminating in raw spectrum analysis. The number
of failing test cases covering the faulty method and non-faulty methods, is the same 169.
Yet, the non-faulty methods have more suspiciousness than faulty method because the
number of passing test cases covering the non-faulty methods is less. Since more passing
test cases cover the faulty method (high value of e,), it renders the faulty method less

suspicious.

For 68% faults in the dataset, the wasted effort with patterned spectrum analysis
is lower than raw spectrum analysis. Moreover, this improvement is a lot better
for the Closure project (the one system in the data set which gravitates towards
integration tests), where we see an improvement for 76% of faults (101 out of
131).

RQ2. How often do raw spectrum analysis and patterned spectrum analysis rankings result in
a wasted effort < 10?

Inspired by the scenario in Section 3.3, we count how many times the location of the
fault is ranked in the top 10. To deal with ties in the ranking (especially at position 10),

47

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

o -

o _| '

2 B Raw Spectrum Analysis :
B Patterned Spectrum Analysis

o H

o - '

(oo}

o

S

©

Wasted effort

400
|

200
|

|
|
|
|
|
|
|
|
|
|
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
|
|
|
|
-
j
|
|
|
|
|
- |
T |
, |
, |
, |
, |
. |
- -
T j
' | -
' ' - j
N [' - i
'’ - ' '
|
0
[R ppe—— P} . -... _...

Figure 3.2: Number of Triggered Methods vs. Wasted Effort

K
[3
I
K
K

92-134 —
137-202 —
423-892 —

4-43
44-71
72-91 —

- 204-397 —
[B

917-1262 —
1273-1721 —
1752-2464 —|
2523-5825 —

o
5

we identify these as having a wasted effort < 10.

Table 3.8 shows, for each project, the number of faults where the wasted effort is
within the range of 10 with both heuristics. For three projects (Lang, Time, and Chart),
the performance of the patterned spectrum analysis is comparable but still better than the
one of the raw spectrum analysis. Whereas, for the remaining two projects (Math and
Closure) the performance of the patterned spectrum analysis is noticeably better. These
findings confirm that patterned spectrum analysis ranks more faults in the top 10. How-
ever, there are still a large amount of faults where the ranking is poor (wasted effort >
10). Especially, for the Closure project less than half (42%) of the faults are ranked in the
top 10. Hence, there is still room for improvement, which we will cover in Section 3.7.

The patterned spectrum analysis succeeds in ranking the root cause of the fault
in the top 10 for 62% of the faults, against 48% for raw spectrum analysis.

48

3.7. POSSIBLE IMPROVEMENTS

RQ3. How does the number of triggered methods affect the wasted effort of raw spectrum analysis
and patterned spectrum analysis?

In Section 3.5, we argued that the number of methods triggered by the fault spectrum
analysis is an indicator of the gravitation towards integration tests (see also the last two
columns in Table 3.5). If that is the case, a good spectrum based fault localisation heuristic
should obtain a good ranking for a particular fault regardless of the number of triggered
methods. Again, based on the scenario (Section 3.3), we gauge the impact of integration
tests.

Therefore, for each fault, we calculate the number of methods triggered by the fault
spectrum analysis. We then sort the faults according to the number of methods and in-
spect the trend with respect to the number of triggered methods. Unfortunately, the
standard deviation for the number of triggered methods is really high (see the o column
in Table 3.5) and a normal scatterplot mainly showed the noise. Therefore, we group the
faults according to the triggered methods into 11 bins of 32 elements. (As these numbers
did not divide well, there were two bins having 30 and 33 triggered methods respectively.)
This binning was decided as a trade-off for having an equal number of elements per bin
and enough bins to highlight a trend in the number of triggered methods, if any. For each
of the bins, we calculated the first quartile, median, and the third quartile, listing them
all in Table 3.9 and plotting them in a series of boxplots (Figure 3.2)

Table 3.9 and Figure 3.2 illustrate that the number of methods triggered has little effect
on patterned spectrum analysis, however, quite a lot on raw spectrum analysis. The last
four bins, in particular, contain faults which trigger more than thousand methods. The
median wasted effort for patterned spectrum analysis is four to eighteen times lower than

raw spectrum analysis.

The better rankings for Closure in Table 3.7 and Table 3.8 are inconclusive, as one
case is not enough to generalise upon. Yet, based on an analysis of the number of
methods triggered by the fault spectrum, there is at least circumstantial evidence
that patterned spectrum analysis performs better for integration tests.

3.7 POSSIBLE IMPROVEMENTS

Upon closer inspection of those faults ranked high by the patterned spectrum analysis
heuristic, we can infer some suggestions for improvement regarding future variations.

First of all, an inherent limitation is that a faulty method which does not call any other
methods will always be ranked at the bottom. Indeed, such methods don’t have a call

49

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

pattern (which is the primary coverage element appearing in the test coverage matrix),
thus the method gets suspiciousness 0. In our case study, we noticed a few cases where
none of the faulty methods had any call pattern. More specifically, there are 4 such cases
in the Math project, 3 in the Chart project, 2 in the Time and Lang projects, and only 1 in
the Closure project. The best example corresponds to the highest wasted effort on fault
60 of the Lang project (See Listing 3.2). Indeed, the faulty method contains(char) in class
org.apache.commons.lang.text.StrBuilder gets suspiciousness 0 because the for loop only
performs direct accesses to memory and never calls any methods.

Similarly, the highest wasted effort for fault 22 in the Math project is due to the faulty
method isSupportUpperBoundInclusive() in class distribution.UniformRealDistribution which
again never calls any other methods. In this case, the method body contained a single
statement return false;; the bug fix replaced it by return true;. A last example is fault 22
in Time project; where the fault resided in a faulty constructor, hence did again not have
any method call pattern.

Listing 3.2: Code snippet for a sample method

public boolean contains(char ch) {
char[] thisBuf = buffer;

for (int i = 0;i < thisBuf.length;i++) {
if (thisBuf[i] == ch) {
return true;
}
}
}

HOWVWONOULA WNKH

==

Listing 3.3: Unique call sequence in faulty method
tryMinimizeExits(Node,int,String)

Node.getLastChild ()
NodeUtil.getCatchBlock (Node)
NodeUtil.hasCatchHandler (Node)
NodeUtil.hasFinally (Node)
Node.getLastChild ()
tryMinimizeExits (Node,int,String)

AU h WN

Second, patterned spectrum analysis is often able to push the faulty method high in
the ranking, however there are several cases where it never reaches the top 10. A nice
example is fault 126 in Closure, where the wasted effort for patterned spectrum analysis
is 85.5. This value is still lower than the one given by raw spectrum analysis (532.5), yet it
is too high to ever be considered in a realistic scenario. Manually analysing the traces of

50

3.8. THREATS TO VALIDITY

the faulty method tryMinimizeExits(Node,int,String) in class com.google.javascript.jscomp.
MinimizeExitPoints, we found a unique call pattern (Listing 3.3) which is only called in
the failing tests. The bug fix* reveals that the developers removed the “if check" with
a finally block. This “if check" involves the last 3 calls in Listing 3.3 (lines 4-6). Despite
being unique, the reason why this call pattern was not picked up by patterned spectrum
analysis is because the order of method calls is crucial. Indeed, the call pattern in patterned
spectrum analysis is an itemset, hence the call pattern is not order preserving and has no
repetitive method calls. Note that the importance of the call-order was also pointed out
by Lo et al. [79].

As a future improvements of patterned spectrum analysis, we might incorporate
statements or branches into the hit-spectrum. The call-order of methods, as well,
is relevant information to incorporate into the hit-spectrum.

3.8 THREATS TO VALIDITY

As with all empirical research, we identify those factors that may jeopardise the va-
lidity of our results and the actions we took to reduce or alleviate the risk. Consistent
with the guidelines for case studies research (see [80, 81]), we organise them into four

categories.

Construct validity — do we measure what was intended ?

Wasted Effort. In this research, we adopted the wasted effort metric to compare raw
spectrum analysis against patterned spectrum analysis. However, in information retrieval
rankings where users do not want to inspect all outcomes other measures are consid-
ered, such as Mean Reciprocal Rank (MRR) or Mean Average Precision (MAP) [10, 82].
It is unclear whether the use of these relative evaluation metrics would alter the results.
Nevertheless, the use of an absolute metric alleviates other concerns [61, 71]. Therefore,

the impact is minimal.

Fault Masking. One particular phenomenon which occurs in a few faults in the De-
fects4J dataset is “fault masking" [61]. This is a fault which is spread over multiple lo-
cations and where triggering one location already fails the test. The fix for fault 23 of
project Chart for instance, comprises two changes in two separate methods of the class
“renderer.category.MinMaxCategoryRenderer ". The first change is to override “equals(Object)
" method and the second involves changes in method “setGroupStroke(- Stroke) ". The test
case which exposes the defect calls both methods, yet the test case fails on the first as-

“https://github.com/google/closure-compiler/commit/bd2803

51

https://github.com/google/closure-compiler/commit/bd2803

CHAPTER 3. FINE-TUNING SPECTRUM BASED FAULT LOCALISATION WITH FREQUENT METHOD
ITEM SETS

sertion calling the “equals(Object) " method thereby masking the “setGroupStroke(Stroke)
" method. The question then is what a fault localisation should report: one location or
all locations ? Furthermore, how should we assess the ranking of multiple locations. In
this research, inspired by earlier work [10, 82], we took the assumption that reporting one
location is sufficient and use the highest ranking of all possible locations. However, one
could make other assumptions.

Internal validity — are there unknown factors which might affect the outcome of the

analyses ?

Multiple faults. One often heard critique on fault localisation heuristics in general
and spectrum based fault localisation in particular is that when multiple faults exist, the
heuristic will confuse their effects and its accuracy will decrease. Two independent re-
search teams confirmed that multiple faults indeed influence the accuracy of the heuristic,
however it created a negligible effect on the effectiveness [62, 83]. We ignore the potential
effect of multiple faults in this chapter. Nevertheless, future research should study the

effect of multiple faults.

Correctness of the Oracle. The continuous integration scenario in Section 3.3 makes the
assumption that the test oracle itself is infallible. However this does not hold in practice:
Christophe et. al. observed that functional tests written in the Selenium library get up-
dated frequently [84]. We ignore the effects of the tests being at fault in this chapter, but
here as well point out that this is something to be studied in future work.

External validity — to what extent is it possible to generalise the findings ? In our
study, we experimented with 351 real faults drawn from five representative open source
object oriented projects from Defects4J dataset; the most recent defect dataset currently
available. Obviously, it remains to be seen whether similar results would hold for other
defects in other systems. In particular, there is a bias towards unit test in the Defects4J
dataset, with only the Closure project gravitating towards integration tests. Further re-
search is needed to verify whether the patterned spectrum analysis is indeed a lot better

on integration tests in other systems.

Reliability - is the result dependent on the tools ? All the tools involved in this case
study (i.e. creating the traces, calculating the raw spectrum analysis, and patterned spec-
trum analysis rankings) have been created by one of the authors. They have been tested
over a period of 2 years; thus the risk of faults in the tools is small. Moreover, for the
calculation of the raw spectrum analysis rankings we compared as best as possible against
the results reported in earlier papers. The algorithm for frequent itemset mining was
adopted from open source library SPMF?, hence there as well the risk of faults is small.

Shttp://www.philippe-fournier-viger.com/spmf/

52

http://www.philippe-fournier-viger.com/spmf/

3.9. CONCLUSION

39 CONCLUSION

Spectrum based fault localisation is a class of heuristics known to be effective for lo-
calising faults in existing software systems. These heuristics compare execution traces of
failing and passing test runs to produce a ranked list of program elements likely to be
at fault. The current state of the art (referred to as raw spectrum analysis) comprises sev-
eral variants, typically classified according to two dimensions: the granularity (statement
— block — method — class) and the fault locator function (Tarantula, Ochiai, T*, and
Naish2). In this chapter, we explore a third dimension: the hit-spectrum. More specif-
ically, we propose a variant (referred to as patterned spectrum analysis) which extends
the hit-spectrum with patterns of method calls extracted by means of frequent itemset
mining.

The motivation for the patterned spectrum analysis variant stems from a series of con-
tacts with software developers working in Agile projects and relying on continuous inte-
gration to run all the tests. Complex systems with multiple branches and staged testing
could really benefit from fault localisation. Faults in integration tests, in particular, are
very relevant: they seldom occur, but if they do, they have a big impact on the team
productivity.

Inspired by the continuous integration motivational example, we compare patterned
spectrum analysis against raw spectrum analysis using the Defects4J dataset. This dataset
contains 351 real faults drawn from five representative open source java projects. Despite
a bias towards unit tests in the dataset, we demonstrate that patterned spectrum analysis is
more effective in localising the fault. For 68% faults in the dataset, the wasted effort with
patterned spectrum analysis is lower than raw spectrum analysis. Also, patterned spectrum
analysis succeeds in ranking the root cause of the fault in the top 10 for 63% of the defects,
against 48% for raw spectrum analysis. Moreover, this improvement is a lot better for the
Closure project; the one system in the data set which gravitates towards integration tests.
There, we see an improvement for 76% defects (101 out of 131). The better rankings for
Closure are inconclusive (one case is not enough to generalise upon), yet based on an
analysis of the number of methods triggered by the fault spectrum, there is at least cir-
cumstantial evidence that patterned spectrum analysis performs better for integration tests.
Despite this improvement, we collect anecdotal evidence from those situations where the
patterned spectrum analysis ranking is less adequate and derive suggestions for future im-

provements.

53

3.10 ACKNOWLEDGMENTS

Thanks to prof. Martin Monperrus for reviewing an early draft of this chapter. This
work is sponsored by (i) the Higher Education Commission of Pakistan under a project
titled “Strengthening of University of Sindh (Faculty Development Program)”; (ii) the
Institute for the Promotion of Innovation through Science and Technology in Flanders
through a project entitled “Change-centric Quality Assurance (CHAQ)” with number
120028.

54

CHAPTER

On the Use of Sequence Mining within

Spectrum Based Fault Localisation

nl\ On the Use of Sequence Mining within Spectrum Based Fault
« Localisation
Gulsher Laghari and Serge Demeyer
In Proceedings of the Symposium on Applied Computing (SAC 2018), 1916-1924. Pau,
France. April, 2018.
DOI: https://doi.org/10.1145/3167132.3167337.

This chapter was originally published in the Proceedings of the Symposium on Applied Computing (SAC 2018).

ABSTRACT

Spectrum based fault localisation is a widely studied class of heuristics for locating faults within
a software program. Unfortunately, the current state of the art ignores the inherent dependencies
between the methods leading up to the fault, hence having a limited diagnostic accuracy. In this
chapter we present a variant of spectrum based fault localisation, which leverages series of method
calls by means of sequence mining. We validate our variant (we refer to it as sequenced spectrum
analysis) on the Defects4dJ benchmark, demonstrating that sequenced spectrum analysis gains a
12% points improvement against the state of the art.

41 INTRODUCTION

Software defects remain a primary concern within the software engineering commu-
nity [43]. Since the source code provides the ultimate description of the behaviour of

https://doi.org/10.1145/3167132.3167337

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

the system, it is there that software engineers search for the the root cause of a defect—
the so-called fault— and fix it subsequently. Fault localisation is widely acknowledged
to be one of the more difficult and time consuming steps while fixing defects and it is,

therefore, a heavily investigated research topic [14].

In this chapter, we focus on what is known as spectrum based fault localisation [11, 60, 67].
Spectrum based fault localisation, a lightweight automated fault localisation technique,
statistically compares executions traces from both failing and passing test cases to pin-
point a faulty program element. It produces a ranked list of program elements, indicat-
ing the likelihood of a program element being at fault. Spectrum based fault localisation
comprises three steps: (i) creating a test coverage matrix; (ii) deducing the hit-spectrum, and
(iii) applying a fault locator.

Today, most variants of spectrum based fault localisation focus on step (iii), and exper-
iment with different fault locator functions (e.g., Ochiai [13] and Naish2 [17]). Recently,
however, a new branch of research investigated variations of step (ii) providing alterna-
tive ways for deducing the hit-spectrum (e.g., time spectra [19], frequent itemsets [30, 31],
and method invariants [20]). This chapter investigates one other alternative for deducing

the hit-spectrum, namely sequence mining. As such, we make the following contributions.

1. We present a variant of spectrum based fault localisation (referred to as sequenced
spectrum analysis in the remainder of this chapter) which leverages series of method

calls by means of sequence mining.

2. We use 47 known fault locators to create a suite of spectrum based fault localisation
heuristics— the current state-of-the-art (referred to as raw spectrum analysis)— and

evaluate them on real faults. This sets the baseline for the comparison.

3. We compare sequenced spectrum analysis against the raw spectrum analysis using the
Defects4J dataset [59].

4. We use several evaluation metrics during that comparison, effectively adhering to
the concerns of absolute measure [61, 71], early precision [8], and total recall [8]

which implies a stringent comparison.

The remainder of this chapter is organised as follows. Section 4.2 lists the known variants
of spectrum based fault localisation for comparison, while Section 4.3 explains the details
of the variant proposed here. Section 4.4 describes the set-up of the comparison, which
naturally leads to Section 4.5 reporting the results. After a discussion on the related work
in Section 4.6 and the threats to validity in Section 4.7, we come to a conclusion in Sec-
tion 4.8.

56

4.2. BACKGROUND

42 BACKGROUND

Spectrum based fault localisation takes as input the faulty program and a test-suite
where at least one test case exposes the defect. It produces, as the output, a ranked list of
program elements where the most suspicious program elements appear at the top of the
list.

There are several concerns to take into account when applying spectrum based fault
localisation on a faulty program. First, it involves the decision to select a granularity level
of a program element. The choices for granularity include from fine-grained statements
to course-grained classes.

Second, the coverage of selected program element is collected by running the test-
suite for the faulty program. This coverage is organised into a data structure called the
test coverage matrix. The rows in this matrix correspond to elements under test and the
columns represent the test cases. Each cell in the matrix marks whether a given element
under test is executed by the test case (marked as 1) or not (marked as 0).

Third, the test coverage matrix is summarised into the hit- spectrum— a summarised
abstract behaviour of the program. The hit-spectrum of an element under test is a tuple
of four values (ey, ey, ny, n,). Where e; and e, are the numbers of failing and passing
test cases that execute the element under test respectively and n s and n,, are the numbers
of failing and passing test cases that do not execute the element under test respectively.

Fourth, the fault locator function translates the hit-spectrum into suspiciousness of the
element under test. This suspiciousness, which is function of the fault locator, indicates
the likelihood of the element under test to be at fault. Most fault locator functions have
a range in interval [0, 1]. Thus, the suspiciousness value for an element under test may
have the lowest value 0 (not suspicious at all) to 1 (highly suspicious). The underlying
intuition is that an element under test which is executed more in failing tests and less in
passing tests gets a higher suspiciousness and appears at the top location in the ranked
list. Sorting the elements under test according to their suspiciousness in descending order
produces the ranked list. We refer to this kind of fault localisation analysis as raw spectrum

analysis.

When applying spectrum based fault localisation, there are three avenues to improve
the effectiveness of the heuristic. The first is exploring the different levels of granularity
of program elements. The state of the art has almost explored all possible granularity
levels from statements [11, 64, 65, 85], blocks [16, 67, 68, 69], methods [20, 31, 60, 70], and to
classes [22, 30]. In this chapter, we select method-level granularity for four reasons. (1)
In object oriented testing a method is the smallest element under test [78]. (2) Objects

interact through methods by following a certain protocol on the calling sequence of its

57

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

methods [56]. For complicated protocols this is a source of subtle bugs which are noto-
riously difficult to resolve [86]. (3) A method often provides sufficient context needed to
help developers understand a bug [20]. (4) Developers expressed a slight preference for
method-level granularity [87].

The second dimension is to optimise the fault locator function which was untill now
the primary avenue for improvement. The efforts include applying functions used in
the molecular biology domain for fault localisation [67], applying association measures
from data mining for fault localisation [16], proposing fault locators based on a theo-
retical model [17], and evolving a completely new set of fault locators through genetic
programming [18].

The third dimension, which has remained largely unexplored up until now, is to try
a variation of the hit-spectrum— the input to the fault locator. Yilmaz et al. for example
adopted traces of method execution times instead of a mere count of passing and failing
tests [19]. Dallmeier et al. extracted sequence of method calls by sliding a window over
execution traces of classes to identify faulty classes [22]. Similarly, we adopted itemset
mining to pinpoint faulty classes [30]. Later, we explored a variant of the hit-spectrum
adopting frequent itemset mining to localise faulty methods [31]. In this chapter, we
present another variant of the hit-spectrum adopting sequence mining to locate faulty
methods.

The motivation for exploring sequence mining in the hit-spectrum is that in the tradi-
tional fault localisation, the hit spectrum only tells whether or not the method is involved
in a test case. However, it ignores the inherent dependencies between the calls leading up
to the fault. In particular, branch conditions, data inputs, or exceptions thrown may be
the real cause for deviating behaviour of the failing test [22]. Since fault localisation has
access to the complete call trace anyway, it is relatively easy to incorporate information
about the call sequences itself. Consequently, we modify the hit-spectrum by adopting
sequence mining, referring to this kind of fault localisation analysis as sequenced spectrum

analysis compared to the traditional approach referred to as raw spectrum analysis.

The hit-spectrum in raw spectrum analysis ignores the inherent dependency rela-
tionships between the calls leading up to the fault. In sequenced spectrum anal-
ysis, we modify the hit-spectrum by incorporating series of method calls mined
from the execution traces.

58

4.3. SEQUENCED SPECTRUM ANALYSIS

43 SEQUENCED SPECTRUM ANALYSIS

Here, we briefly describe the steps in our sequenced spectrum analysis. We run the test
cases on a faulty program and in each test case, (1) collect the traces for each executed
method of the project (Section 4.3.1), (2) mine the call sequences from these traces (Sec-
tion 4.3.2), (3) calculate the hit-spectrum (Section 4.3.3), and finally (4) rank the methods
(Section 4.3.4) according to their likelihood of being at fault.

43.1 Collecting the Trace

In each test case, during the execution of a method, we intercept each method call
directly originating from the method and record it into the trace. The intercepted call can
be a call to a project method or to the external library method. Note that we incorporate
calls to the constructors, hence have knowledge about the creation of objects as well.

A trace is collected by introducing the logger functionality into the base code via As-
pect]!. More specifically, we use method execution and method call join points. For a
method execution join point, there are two advices (before and after), while there is one
advice for method call join point. In the before execution advice, a trace is initiated for the
executed method. In the before call advice, which picks out every call site, we collect the
names of both callee and the caller method and add the called method into the trace of
the caller method. Finally, in the after execution advice, the current trace for the method is
closed. To save the memory, we assign unique integer identifier to each executed method
and add the identifier to the trace instead of the name.

As a method can also execute one or more times in a test case, we separate the call
traces for each execution. Thus, the complete trace for a method m() in a test case 7T is
represented as a set T, = {t1,%2,...,tn}. Where ¢; is a list of the method calls invoked
directly from method m() during its i*" execution. This implies that the calling relation
is not followed transitively but is terminated after one level. If method m() in Listing 4.1

executed twice in a test case T, its trace would be 7, = {(m2,m3), (m2,m3)}.

Listing 4.1: Example method

public void m(){
m2 () ;
m3 () ;

}

A WN R

Ihttp://wuw.eclipse.org/aspectj/

59

http://www.eclipse.org/aspectj/

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

4.3.2 Obtaining Call Sequences

Once the call traces are collected, we mine the sequence of method calls from the
traces of a method. Normally, a method executes only once in a test case resulting into

only a single trace for a method (|7,,| = 1).

Hence, we adopt the MARBLES algorithm to mine the call sequences from the method
call traces [88]. This algorithm mines general, parallel, and serial episodes (subsequences)
from a large sequence (a single call trace in our case) sliding a window of fixed size. Since
we are interested in an order-preserving sequence of method calls, we only use the serial
episodes. From here on, we refer to these episodes simply as sequences.

In this experiment, we use a window size of 8. We restrict the window size to 8 in-
spired by Dallmeier et. al. who found that increasing the window size beyond 8 did
not increase effectiveness of fault localisation [22]. Also for window sizes greater than
8 when applied on long traces, MARBLES takes a long time to produce a result. We ap-
ply the algorithm to translate the complete trace 7, for a method m() obtained in a test
case 7 into a set of call sequences St . Thus, for each call trace ti € T, as input, the
algorithm produces s; a set of call sequences as output. Note that the method trace may
comprise a call (or a series of calls) to a single method. In this case, MARBLES outputs an
empty sequences set since a sequence must contain at least two distinct items. However,
we record the single call as sequence, since it can be useful to tackle API violations like
open-close principle [89]. The s; is a set of unique call sequences X'. The final set of the call
sequences S, (Equation 4.1) for the method m() in test case 7 is the union of the set of

call sequences s;.
St = si (4.1)
i=1

4.3.3 Calculating the Hit-Spectrum

The call sequences of a method m() in sequenced spectrum analysis are obtained by
running the set of failing test cases (denoted as Tr) and the set of passing test cases (de-
noted as Tp). We obtain a set of call sequences S,,, (Equation 4.2) for each method. The
call sequences set S, is the union of (i) the call sequences of a method resulting from the
failing test cases (S7,, : 7 € Tp) and (ii) the call sequences resulting from the passing
test cases (St,, : 7 € Tp).

Sm={X|X €Sy AN TETFIU{X|X €Sy A T € Tp} (4.2)

60

4.4. EVALUATION

The set S,,, (Equation 4.2) is used to construct the test coverage matrix for a method.
The hit spectrum is then calculated for each call sequence X in set S,,, from the test cov-
erage matrix.

43.4 Ranking Methods

To produce a ranked list of methods, first each call sequence gets a suspiciousness
score. Then, a method gets the suspiciousness which is the maximum suspiciousness of
its constituting call sequences. The details for these steps follow.

Suspiciousness per call pattern. Based on the hit-spectrum calculated from the test cov-
erage matrix for each method, each call sequence X € S, (Equation 4.2) gets a suspi-
ciousness score Susp(X') calculated by using a fault locator.

Suspiciousness per method. Each method m() gets a suspiciousness Susp(m) which is
the suspiciousness of the call sequence X with the highest suspiciousness (Equation 4.3).
We choose the maximum (instead of average) for the suspiciousness score because the
technique is looking for exceptional sequences: one unique and highly suspicious se-
quence is more important than several unsuspicious ones. The methods with an empty
call sequence get suspiciousness 0.

Susp(m) = max ({Susp()() | X € Sm}) (4.3)

Ranked list. Finally, a ranked list of all executed methods is produced by sorting the
methods on their suspiciousness Susp(m) such that methods with the highest suspicious-
ness appear at the top.

44 EVALUATION

In this section, we provide the details of empirical evaluation on how far the two
variants (raw spectrum analysis and sequenced spectrum analysis) can improve the fault
localisation.

441 Dataset

For this empirical evaluation, we use real defects which have been collected by Just et.
al. into a database called Defects4J? (a database of existing faults to enable controlled
testing studies for Java programs) [59]. Defects4J version 1.1.0 contains defects from 6
open source java projects: Apache Commons Math, Apache Commons Lang, Joda-Time,

2http://defects4j.org

61

http://defects4j.org

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

Table 4.1: Descriptive Statistics for the Projects Used in Our Experiments

Project Number of Bugs Source KLoC Test KLoC Number of Tests

Math 106 85 19 3,602
Lang 65 22 6 2,245
Time 27 28 53 4,130
Chart 26 96 50 2,205
Closure 133 90 83 7,927

JFreeChart, Google Closure Compiler, and Mockito. In our study, our tracing system
could not be used with Mockito, hence this project was excluded from our study. The
descriptive statistics of 5 projects are reported in Table 4.1.

The database contains meta info about each defect including the source classes modi-
fied to fix the defect, the test cases that expose the defect, and the test cases that trigger at
least one of the modified classes. In this evaluation, we use 346 defects which are located
inside methods or constructors.

4.4.2 Evaluation Metrics

Fault localisation heuristics produce a ranked list of elements under test; in the ideal
case the faulty unit appears on top of the list. Several ways to evaluate such rankings
have been used in the past, including relative measures in relation to project size, such
as the percentage of units that need or need not be inspected to pinpoint the defect [60].
However, absolute measures are currently deemed better for comparison purposes [60,
71]. The most commonly adopted metrics are wasted effort, acc@n, and mean average preci-
sion [8, 20, 60, 70]. Consequently, we will use these metrics for our comparisons.

To deal with defects spread over multiple locations, we evaluate from the perspective
of a best-case debugging scenario as argued by Pearson et. al. [85]. In such a scenario
identifying one of the possible locations is good to understand and consequently repair
the defect. Indeed, once the first faulty element is located it will help developers to find
the remaining ones [8].

Mean Wasted Effort (MWE) — Smaller is better. The mean wasted effort is the simply the

mean of the wasted effort in all ranked lists. The wasted effort is an absolute measure which

62

4.4. EVALUATION

indicates the number of non-faulty methods to inspect in vain before reaching the first

faulty method. It is computed as follows:

wasted effort = m + g 4.4

Where m is the number of non-faulty methods ranked strictly higher than the faulty
method; and # is the number of non-faulty methods with equal rank in the ranked list to
the faulty method. This deals with ties in the ranked list.

acc@n — Higher is better. This is the count of all the faults successfully localised in top-
n positions in the ranked list. Inspired by Le et al. [20], we also choose n € {1, 3, 5},
thus effectively creating three variants of the acc@n namely acc@1, acc@3, and acc@5. It is
not uncommon for two methods in a ranked list sharing the same suspiciousness scores.
Hence, while computing the acc@n, we break the ties randomly.

Mean Average Precision (MAP) — Higher is better. The mean average precision has tradi-
tionally been used in information retrieval to evaluate the ranked lists and is also adopted
for studying fault localisation. It takes all faulty elements into account and emphasises
recall over precision. Thus, it is suitable in scenarios where developers search deep in
the ranked list to find more relevant faulty elements [8]. The mean average precision is the
mean of aquerage precision in all ranked lists. The average precision in a single ranked list is
calculated as following;:

M

e P(i) x pos(i)
average precision = z; number of faulty methods

(4.5)

Where: i indicates the position of a method in the ranked list; M is size of the ranked
list (number of methods ranked); pos(i) is a boolean indicating whether or not the method

at i'" position in the ranked list is faulty; P(i) is the precision at i*" position in the ranked

__ # faulty methods in top i
7 .

list, computed as P(i)

Our use of several metrics together evaluates fault localisation in several contexts.
Wasted effort does not normalise the rank of faulty methods with respect to total number
of methods in the program. Thus, it is inline with recommendations of Parnin et. al. [71]
that for the fault localisation to be useful for developers the aim should be to improve
absolute rank rather than percentage rank. In their study, they found that developers
switched to other means of debugging when they did not find faulty statements within
the first few top positions in the ranked list. The same concerns are also addressed by
acc@n. However, when developers want to search deep in the ranked list to find more
relevant faulty methods, mean average precision is suitable in this context [8].

63

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

4.4.3 Experimental Protocol

To compare the two variants, we use faulty version of each project. Then, we run each
spectrum based fault localisation for all relevant test cases, i.e. all test classes which trigger
at least one of the source classes modified to fix the fault as recorded in the Defects4J
dataset. Assuch, we obtain ranked lists for each of the 346 defects in the dataset altogether
and also organised by project (see Table 4.1). We first compare the 47 fault locators within
each spectrum analysis before going into a more detailed analysis. We use five different
metrics for this comparison: Mean Average Precision (MAP), Mean Wasted Effort (MWE)
and acc@1, acc@3, and acc@5.

Best Performing Fault Locator. While comparing raw spectrum analysis against se-
quenced spectrum analysis we use the best performing fault locator for each case. To iden-
tify the best performing fault locator, we first rank all 47 fault locators on each of the five
evaluation metrics and then compute the mean of the ranks. Thus, the fault locator with
the lowest mean rank— performing best in all evaluation metrics— is selected as the best

performing one.

Significance Tests. We perform statistical tests of significance for raw spectrum analy-
sis and sequenced spectrum analysis on the evaluation metrics wasted effort (WE) and average
precision (AP). Since we have a matched pair design and we compare whether one variant
is better than its counterpart, we choose the Wilcoxon signed rank test and run as paired
one-tailed test. We favour the non-parametric Wilcoxon signed rank test over parametric
t-test owing to small sample sizes and non-normal distribution of scores for both wasted
effort as well as average precision. As is common practice in software engineering research,
we set the significance level a of 0.05 (there is 5% risk of concluding that the two distri-

butions are different when in fact they are not).
Research Questions. In this evaluation, we address following research questions.

RQ1. What is the baseline performance of raw spectrum analysis?
Motivation. We establish the best performing fault locator and obtain the rankings for
the 346 faults in the Defects4J. This sets the baseline against which we compare.

RQ2. How much can sequenced spectrum analysis improve upon raw spectrum analysis?

Motivation. We establish the best performing fault locator for sequenced spectrum anal-
ysis and obtain the rankings for the same 346 faults. We compare these rankings
against the baseline obtained in RQ1..

RQ3. Are there project specific differences between the rankings?
Motivation. Inspired by the work of Zeller et. al. [90], we investigate whether the re-
sults obtained for the whole Defects4J data set apply to the various projects within

that dataset. This is to assess the robustness of our findings.

64

4.5. RESULTS

RQA4. Is sequenced spectrum analysis efficient compared to raw spectrum analysis?

Motivation. Here, we evaluate the running time of sequenced spectrum analysis
in comparison with raw spectrum analysis to note its practical applicability.

Additional material that was excluded from the original paper due to space constraints.

45 RESULTS

In this section, we discuss the answers to three research questions introduced in Sec-
tion 4.4.3.

RQ1. What is the baseline performance of raw spectrum analysis?

To answer this question, we apply raw spectrum analysis with 47 known fault locators
on all defects together, thus aggregating the results over all projects in the dataset. This
allows for a sufficiently rigorous analysis of the current state of the art and as such estab-
lishes the baseline performance of raw spectrum analysis. As mentioned in the protocol,
we rank the fault locators from the top with the best performance to the bottom with the
worst.

Table 4.2 lists the fault locators along with their scores for five evaluation metrics
sorted on their rank (rightmost column entitled R). Fault locators with the same rank
are highlighted in the same background colour. We observe in the table that GP13 and
Naish2 have good scores for acc@1, acc@3, acc@5, and a better mean average precision
than M2 and Goodman. M2 and Goodman, on the other hand, are slightly better in terms
of mean wasted effort. Studying the performance on each of the evaluation metrics, the
value of 63 for acc@1 tells us that for 63 out of 346 (18%) raw spectrum analysis has an exact
hit: the method containing the fault is the first one in the ranking. Similarly, acc@3 (120
out of 346 is 35%) and acc@5 (142 out of 346 is 41%) demonstrates that the fault locators
perform reasonably well in many cases. The mean wasted effort (MWE), however, reveals
that for many cases the fault localisation is unsatisfactory: a MWE of 96 implies that on
average 96 methods need to be inspected before one arrives at the correct location. This
suggests a long tail distribution, where for many cases the first faulty method is ranked
quite low. The value for mean average precision (MAP) reinforces the problem: a low value
of 0.27 implies that the relative location of other faulty methods (in cases where fault
expands to multiple methods) is also quite low.

65

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

Table 4.2: Establish the baseline performance for raw spectrum analysis over the 346 defects
in the dataset.
MAP = Mean Average Precision, MWE = Mean Wasted Effort.

Fault locator acc@l acc@3 acc@5 MAP MWE Rank
GP13 [18] 63 120 142 0.2780349 96.73 1
Naish2 [17] 63 120 142 0.2776756 96.64 1
M2 [17] 62 118 141 0.2753030 96.32 2
Goodman [17] 61 116 138 0.2695181 16.68 3
Ample2 [17] 64 120 140 0.2764775 101.24 3
T* [60] 62 119 139 0.2744910 96.37 4
Zoltar [91] 61 118 138 0.2735461 96.14 5
Kulczynski2 [17] 61 116 137 0.2718006 96.56 6
Ochiai [67] 61 116 138 0.2693963 98.02 7
Jaccard [45] 61 116 138 0.2695181 104.20 8
Dice [17] 61 116 138 0.2695181 104.20 8
Kulczynskil [17] 61 116 138 0.2695181 104.20 8
Anderberg [17] 61 116 138 0.2695181 104.20 8
Sgrensen

-Dice [17] 61 116 138 0.2695181 104.20 8
GP19 [18] 62 118 139 0.2729868 125.20 9
Arithmetic

Mean [17] 61 118 138 0.2677694 102.93 9
Cohen [17] 61 118 138 0.2678460 105.66 10
Harmonic

Mean [17] 60 115 135 0.2637967 82.19 10
Geometric

Mean [17] 60 115 135 0.2620774 83.72 11
Fleiss [17] 58 107 123 0.2471480 36.29 12
Scott [17] 57 107 125 0.2446414 37.93 13
CBlIInc [17] 60 118 135 0.2669550 107.01 13
Barinel [92] 60 118 135 0.2669550 107.11 14
Tarantula [11] 60 118 135 0.2668479 107.03 14
CBISqrt [17] 62 115 136 0.2657316 125.09 15
Rogot2 [17] 60 115 136 0.2642806 139.41 16
Ochiai2 [17] 60 115 136 0.2634117 130.00 17
Wong3' [17] 42 72 86 0.1785421 22.64 18
Wong3 [93] 42 72 86 0.1785421 22.64 18
Wong?2 [93] 41 66 77 0.1582824 16.04 19
Rogot1 [17] 57 107 125 0.2446351 338.34 20
Ample [67] 54 93 116 0.2297198 214.02 21
CBILog [17] 15 28 36 0.0757946 33.22 22
Overlap [17] 41 77 100 0.1857891 178.36 23
Russell

& Rao [17] 38 73 97 0.1802516 177.87 24
Wongl [93] 38 73 97 0.1802516 177.87 24
Binary [17] 37 69 92 0.1714134 188.00 25
Hamann [17] 41 66 77 0.1582824 367.43 26
Hamming

etc. [17] 41 66 77 0.1582824 437.74 27
Rogers &

Tanimoto [17] 41 66 77 0.1582824 437.74 27
GPO02 [18] 23 48 63 0.1268758 277.10 27
M1 [17] 41 66 77 0.1582824 437.74 27
Simple

Matching [17] 41 66 77 0.1582824 437.74 27
Sokal [17] 41 66 77 0.1582824 437.74 27
GPO03 [18] 12 23 32 0.0656960 342.97 28
Euclid [17] 7 14 27 0.0521883 428.46 29

Naish1 [17] 1 3 7 0.0200899 419.36 30

66

4.5. RESULTS

Spectrum Analysis== Raw Spectrum Analysis= Sequenced Spectrum Analysis

1000

100

=
o

Absolute rank (log scale)

Raw) Sequenced
Spectrum Analysis

Figure 4.1: Comparison of the distribution of absolute rankings for faulty methods.

As baseline performance, we deduce that 18% of faults correspond with an exact
hit (acc@1) while for many faults the heuristic performs reasonably well (acc@3
for 35% of the faults; acc@b for 41% of the faults). However, the mean wasted
effort is 96.73 which implies that for many cases the fault localisation is unsatis-
factory and suggests a long tail distribution.

RQ2. How much can sequenced spectrum analysis improve upon raw spectrum analysis?

To answer this question, we apply sequenced spectrum analysis over the same dataset
using the same protocol. Thus, we use the fault locators on all 346 defects and rank them
to identify the best performing one. This allows for a fair comparison between raw spec-
trum analysis and sequenced spectrum analysis in the sense that we choose the optimal
configuration for both of them. Table 4.3 lists the fault locators along with their scores
for five evaluation metrics sorted according to their rank; highlighting fault locators with
the same rank in the same background colour.

Here, we see that Ample2 is the best performing fault locator with Fleiss, T*, M2, and
Arithmetic Mean as close seconds. However, the scores of Ample2 with sequenced spec-
trum analysis are better for all evaluation metrics compared to the raw spectrum analysis.
The value for acc@1 is 103, thus for 103 out of 346 (30%) faults sequenced spectrum analysis
has an exact hit — an absolute 12% improvement (30% vs 18%). Similar improvements
can be seen for acc@3 (159 out of 346 is 46% compared to 35%) and acc@5 (191 out of 346
is 55% compared to 41%). Also, the mean wasted effort has reduced from 96.73 to 25.88,
thus on average the fault is now located on the 25" position in the ranking. The mean

67

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

Table 4.3: Performance improvement for sequenced spectrum analysis over the 346 defects
in the dataset.
MAP = Mean Average Precision, MWE = Mean Wasted Effort.

Fault locator acc@l acc@3 acc@5 MAP MWE Rank
Ample2 103 159 191 0.3925699 25.88 1
Fleiss 103 157 191 0.3874628 16.01 2
T* 102 160 190 0.3936098 31.18 3
M 102 160 189 0.3933028 31.10 4
Arithmetic

Mean 103 157 189 0.3875244 26.67 5
Goodman 101 157 190 0.3854730 9.83 6
Naish2 101 159 187 0.3918473 29.12 7
Geometric

Mean 102 156 188 0.3866599 24.31 8
Kulczynski2 101 157 189 0.3893806 30.53 9
Ochiai 101 158 191 0.3883824 31.42 10
GP19 103 159 190 0.3929647 34.38 10
GP13 101 159 188 0.3927791 33.46 11
Harmonic

Mean 102 154 186 0.3859800 23.83 12
Scott 101 156 189 0.3821700 16.73 12
Cohen 101 157 189 0.3851854 26.74 13
Jaccard 101 157 190 0.3866061 32.17 14
Dice 101 157 190 0.3866061 32.17 14
Anderberg 101 157 190 0.3866061 32.17 14
Sgrensen

-Dice 101 157 190 0.3866061 32.17 14
Ochiai2 101 157 192 0.3863531 35.48 15
Kulczynskil 101 154 187 0.3848006 32.52 16
Rogot2 102 154 186 0.3860920 37.45 17
Wong3’ 89 139 167 0.3391367 12.15 18
CBIInc 96 147 182 0.3738493 28.32 18
Wong3 89 139 167 0.3391367 12.15 18
CBISqrt 99 154 189 0.3817832 34.71 19
Rogot1 101 156 189 0.3820858 61.86 20
Wong?2 87 132 157 0.3222868 9.79 21
Zoltar 96 153 183 0.3739687 32.60 22
Tarantula 96 147 182 0.3750226 34.01 23
Barinel 96 147 182 0.3750091 34.03 24
Ample 94 146 176 0.3612457 44.78 25
CBILog 38 63 82 0.1650905 8.73 26
Hamming

etc. 87 132 157 0.3222977 91.93 27
Rogers &

Tanimoto 87 132 157 0.3222977 91.93 27
Hamann 87 132 157 0.3222868 83.37 27
Simple

Matching 87 132 157 0.3222977 91.93 27
Sokal 87 132 157 0.3222977 91.93 27
M1 87 130 155 0.3211702 92.57 28
Russell

& Rao 51 96 118 0.2328541 113.18 29
Wong1 51 96 118 0.2328541 113.18 29
Binary 45 88 109 0.2098345 125.15 30
Overlap 43 80 104 0.2018613 114.95 31
GP02 31 69 88 0.1702866 176.30 32
GPO3 31 69 89 0.1632317 175.70 32
Naish1 16 28 45 0.0900345 142.08 33

Euclid 8 18 30 0.0681149 268.55 34

68

4.5. RESULTS

average precision has risen from 0.27 to 0.39 implying that besides the location of the
first faulty methods, the location of other faulty methods has also improved— the faulty
methods are ranked higher in the list .

This suggests that the distribution of the rankings is better for sequenced spectrum anal-
ysis, which is confirmed in Figure 4.1. In these violin plots we juxtapose the distributions
of absolute ranks (i.e. the location of the first faulty method) for both variants. There
are some interesting observations in these plots. First, the density curve in the plot for
sequenced spectrum analysis is wide for lower ranks and quickly narrows for higher ranks,
indicating that most of the faulty methods are located on top of the ranked list. The
density curve for raw spectrum analysis on the other hand narrows slowly indicating that
many faulty methods are also located deeper in the ranked list — the ranks are spread.
Second, the median in the box plot for sequenced spectrum analysis shows that for 50% of
the faults the faulty methods are located within location 4 in the ranked lists, whereas for
raw spectrum analysis this median is at 9 implying the faulty methods are located more
deeply. Finally, the third quartile for sequenced spectrum analysis is nearly same as the me-
dian for raw spectrum analysis— the highest location where half of the faults are ranked in
raw spectrum analysis, with sequenced spectrum analysis about 75% of the faults are located

at the same location.

Significance tests for sequenced spectrum analysis versus raw spectrum analysis on both
average precision and wasted effort metrics have p-values < 2.2e-16, show that sequenced
spectrum analysis is not only better, but that it is significantly better in the statistics sense

of the word.

When compared to raw spectrum analysis, sequenced spectrum analysis gains
12% improvement for exact hit (acc@1) and reduces the average wasted effort
from 96.73 to 25.88. The distribution of the fault locations is better which results
in statistically significant improvements.

RQ3. Are there project specific differences between the rankings?

While answering the previous questions, we generalised the comparison on all the
defects together irrespective of the project. However, as noted by Zeller et. al. there
are project-specific variations that might provide valuable insights [90]. Therefore, we
compare the two spectrum analyses on defects for each individual project. As done in
previous subsections, we first select the best performing fault locator for each project and
for each variant. Due to space limitations, we omit the results for the selection of the
best performing fault locator and immediately move towards the actual comparison in

Table 4.4. This table lists the project specific scores for the five evaluation metrics for

69

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

Table 4.4: Project specific comparison of sequenced spectrum analysis (SS) versus raw
spectrum analysis (RS).

SA = Spectrum Analysis (SS vs RS), MAP = Mean Average Precision, MWE = Mean Wasted Ef-
fort.

Project SA Fault Locator. acc@1 acc@3 acc@5 MAP MWE
g SS Fleiss 17 37 47 0.2236320 30.61
é RS GP13 7 15 20 0.1085065 222.89
-:FG SS Goodman 33 54 69 0.4458375 4.79
= RS Goodman 21 45 51 0.3349293 7.92
Geometric
%" SS Mean 41 50 52 0.7294623 1.167
- RS GP13 21 43 49 0.5238196 3.78
E SS Ample2 6 10 15 0.2938999 16.15
a RS GP13 5 8 9 0.2201962 39.38
5 SS CBISqrt 9 14 16 0.4632694 13.2
S RS Tarantula 10 15 16 0.4986104 27.16

the best performing fault locator for that project. Table 4.5 also lists the project specific
comparison of p-values for both average precision and wasted effort.

The first interesting observation to make concerns the best performing fault locators:
they vary a lot across projects. Naish2 (the best performing fault locator for raw spec-
trum analysis when applied on all projects together) is never the best performing project-
specific fault locator. And Ample?2 (the best performing fault locator for sequenced spec-
trum analysis when applied on all projects together) only appears as the best for the Time
project. Thus, a new set of best performing fault locators has emerged for both raw spec-
trum analysis and sequenced spectrum analysis on project by project basis, illustrating that
great care is needed when configuring such tools.

The second interesting observation in Table 4.4 is that there is positive change for the
values of acc@1 for both spectrum analyses. With a new set of best performing fault
locators, overall exact hit (acc@1) for sequenced spectrum analysis has now increased from
103 to 106, while for raw spectrum analysis it has increased from 63 to 64.

Next, we see that —with the exception of project Chart— sequenced spectrum analy-
sis outperforms raw spectrum analysis. Moreover, the p-values in Table 4.5 confirm that

70

4.5. RESULTS

"109[01d oeS 10J sasATeue wn1dads 10q 10j SPOYISW AI[NEJ JO SHUBI SIN[OSqe JO SUonNqLisiq g4 2In3ig

paosuanbas

mey

sIsAreuy wnJioads
paosuanbas mey paosuanbas mey paosuanbas mey

paosuanbas

mey

awiL

yrew Bue 2Inso|D

Heyo

sisAreuy wnuoads paosuanbas m_wzmc,q wnioads mey m 'sIsAleuy wnJuoads

o
—

00T

000T

(oreas 6oj) Mues ainjosqy

71

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

Table 4.5: Significance tests for sequenced spectrum analysis vs. raw spectrum analysis.

Project Comparison p-value (Average Precision) p-value (Wasted Effort)

Closure SS > RS 7.849e-10 < 2.2e-16
Math SS > RS 6.983e-05 9.915e-07
Lang SS > RS 2.87e-05 2.096e-05
Time SS > RS 0.01442 0.0009032
Chart SS > RS — 0.2764

RS > SS 0.3638 —

sequenced spectrum analysis is statistically significantly better for these four projects, how-
ever the p-value for average precision in project Time is insignificant. A deeper analysis
of the project Chart reveals that sequenced spectrum analysis is better for mean wasted ef-
fort while raw spectrum analysis is better for mean average precision and acc@1. However,
as seen in Table 4.5 the better score for mean wasted effort with sequenced spectrum anal-
ysis is statistically significant while the better score for mean average precision with raw
spectrum analysis is statistically insignificant.

We again turn to violin plots to explore these differences in more detail. Figure 4.2
provides distributions of absolute ranks of first faulty method in the ranked lists for both
spectrum analyses for each project. We readily observe that shapes of the two distribu-
tions for the project Chart are nearly the same, suggesting that sequenced spectrum anal-
ysis slightly improves upon raw spectrum analysis. However, sequenced spectrum analysis
improves upon raw spectrum analysis for the remaining four projects— with significant
improvement for the project Lang. Yet, we observe that the distribution of absolute ranks

with sequenced spectrum analysis for project Time has some outliers.

On project by project basis, sequenced spectrum analysis performs better than
raw spectrum analysis for four projects. For the fifth project the results are, for
practical purposes, the same. Moreover, the best performing fault locator varies a
lot across the projects.

RQA4. Is sequenced spectrum analysis efficient compared to raw spectrum analysis?

All the measurements are performed on a Mac machine (2.5 GHz Intel Core
i7, 16 GB 1600 MHz DDR3) running MacOSX (10.11.6) using the bash internal

72

4.6. RELATED WORK

Table 4.6: Summary of time taken by each spectrum analysis for all projects.

Spectrum . Time
Analysis PR Tracin Sequence Generation Rankin, Total
g q g

g Closure 03:18:58 69:40:54 03:19:23 16:19:15
g @ Math 01:09:09 01:20:35 00:01:51 02:31:35
—q;: —E‘ Lang 00:08:30 00:20:37 00:00:48 00:29:55
§ © Time 00:04:57 00:04:57 00:01:05 00:10:59
% Chart 00:06:07 00:01:39 00:00:28 00:08:14
E Closure 01:09:22 — 00:02:39 01:12:01
‘?3 é Math 01:07:29 — 00:01:09 01:08:38
g % Lang 00:10:13 — 00:00:35 00:10:48
< Time 00:03:24 — 00:00:19 00:03:43

Chart 00:04:04 — 00:00:16 00:04:20

Additional material that was excluded from the original paper due to space constraints.

variable $SECONDS (which indicates the number of seconds the script has been
running) for a single run of the heuristic. As we run the tests sequentially, such
time measurements are crude, thus should only be seen as an initial indicator for

the relative time during the different steps.

Apart from the time to collect the coverage and produce the ranked lists,
sequenced spectrum analysis incurs an overhead to mine sequences using the
MARBLES algorithm [88]. Thus, there is an additional time overhead of the
MARBLES during sequenced spectrum analysis. Table 4.6 provides the timing
information with both techniques. We observe that the techniques are practically
applicable for smaller projects, with sequenced spectrum analysis relatively slower
owing to extra overhead. However, for large project Closure, we see the sequenced

spectrum analysis running the risk of being impractical.

Additional material that was excluded from the original paper due to space constraints.

73

CHAPTER 4. ON THE USE OF SEQUENCE MINING WITHIN SPECTRUM BASED FAULT
LOCALISATION

46 RELATED WORK

The Tarantula tool provided the foundation for research on spectrum based fault local-
isation [11]. Afterwards, several researchers made attempts to increase the effectiveness
of spectrum based fault localisation, including work on (a) finding the optimal fault lo-
cators, (b) changing the spectrum analysis, (c) using state-of-the-art information retrieval
techniques to learn to rank, and (d) test-suite reduction and diagnosability.

Fault locators. Abreu et al. introduced Ochiai, used in the molecular biology domain,
into spectrum based fault localisation and demonstrated better performance [15, 67].
Steimann et. al. defined and evaluated T* (a variant of Tarantula) and there as well
demonstrated better performance [60]. Lucia et al. applied 20 well-known association
measures from data mining on fault localisation and concluded that 10 out of 20 associ-
ation measures were comparable to Tarantula and Ochiai [16]. Naish et al. proposed a
couple of fault locators through a theoretical model and established that they performed
better than existing ones [17]. Later studies confirmed that one (Naish2) is among the best
performing fault locators [20, 85], which is corroborated in this comparison. Yoo evolved
an entirely different set of fault locators (GP01 ... GP30) that performed better than exist-
ing ones [18]. Work by B. Le et al. finds that GP13 and GP19 perform better [20].

Hit-Spectra. Yilmaz et al. proposed time-spectrum as a variation for spectrum analy-
sis [19]. Instead of coverage of methods, time-spectrum uses traces of method execution
times collected from both passing and failing tests. The potential causes of faults are
identified as deviations of failing tests from behaviour models created from time spectra
collected in passing test runs. Dallmeier et al. extracted sequence of method calls by slid-
ing a window of fixed size over execution traces of classes to identify faulty classes [22].
Likewise, Laghari et al. pinpoint faulty classes but adopting itemset mining [30]. How-
ever, in our approach, we use sequence mining to mine the sequences from call traces of

methods to locate faulty methods and not classes.

Learning to rank. Xuan and Monperrus proposed MULTRIC, a learning-based ap-
proach which combines multiple ranking metrics to learn and then rank [70]. They demon-
strated on seeded faults that MULTRIC improved upon existing fault locators. Similarly,
B. Le et al. [20] propose Savant, a learning to rank approach which exploited inferred
likely method invariants mined from passing and failing test cases. They find that Savant

is more effective than state of the art on real faults.

Specification mining. Runtime traces have been used to learn API specifications such
as legal method call sequences. These specifications are used for purposes including
documentation, learning the APIs, and also for bug detection. OCD learns and enforces
temporal specifications over method call sequence [94]. The algorithm uses a predefined

template which specifies a sequence of only two method calls and operates over a finite

74

4.7. THREATS TO VALIDITY

window on the trace. The tool is reported to have detected anomalies as violations of
inferred sequences in Eclipse and Ant, though the anomalies did not result in program
crashes. Pradel and Gross infer specification for Java standard library from method traces.
They use method calls as object collaborations to infer API specifications as finite state
machines which model the legal method call sequence [41]. JMiner traces Java programs
to generate parametric specifications. The specifications produced with JMiner are re-
ported to have detected a few bugs in open source Java programs [95]. Similarly, we mine
call sequences for methods from both passing and failing tests and statistically compare
these sequences to pinpoint faulty methods.

47 THREATS TO VALIDITY

As with all empirical research, we identify those factors that may jeopardise the va-
lidity of our results and the actions we took to reduce or alleviate the risk. Consistent
with the guidelines for case studies research (see [80, 81]), we organise them into four
categories.

Construct validity. In this research, we compare sequenced spectrum analysis against
raw spectrum analysis. To reduce the risk on construct validity, we evaluated with five dif-
ferent metrics assessing different perspectives on what is deemed better. The use of an ab-
solute metric (wasted effort) and also acc@n alleviates concerns on relative measures [71].
While the evaluation of fault localisation on mean average precision has implication for
developers who search deep in the ranked list to find more relevant faulty methods and
for automated fault repair techniques.

Internal validity. When selecting the best fault locator which performs better in all
five evaluation metrics, we use simplified method of first ranking the fault locators on
individual metrics, then computing the mean of their ranks, and finally rank them on
their mean rank. This may not be the best solution but we ensured that it was better than
simple aggregation method of summation of metric scores.

External validity. We use several evaluation metrics together which implies a strin-
gent comparison. Evaluation on a single metric alone may result in a different interpre-
tations. A notable example in this chapter is comparison on project Chart (see Table 4.4).
If only evaluated on Mean Wasted Effort, the sequenced spectrum analysis is better than raw
spectrum analysis. However, when comparing on several metrics together the result is
different. This observation signals that the evaluation metric used to evaluate the fault
localisation has an effect on its accuracy. Thus, it is also unwise to generalise the findings,
but instead metric-specific insights should be explored.

Reliability. All the tools involved in this case study (i.e. creating the traces, calculat-
ing the ranked lists etc.) have been implemented and tested for three years by the first

75

author. Moreover, for sequenced spectrum analysis we used the MARBLES [88] algorithm
which has been already tested by the creators of MARBLES. However, lurking faults in
any of the tools may affect the precise rankings.

48 CONCLUSION

In this chapter, we presented sequenced spectrum analysis— a class of spectrum based
fault localisation which modifies the hit-spectrum by incorporating series of method calls
mined from the execution traces. To compare sequenced spectrum analysis against the
state of the art, we created a suite of fault localisation heuristics with 47 known fault
locators and evaluated them to establish a baseline with the best performing one. Then,
we compared sequenced spectrum analysis against raw spectrum analysis and conclude that
sequenced spectrum analysis is better than raw spectrum analysis, regardless of whether we
evaluate for the whole dataset or whether we evaluate on a project specific basis.

During this comparison, we also learned that the best performing fault locator varies
quite a lot depending on the project, the variant of spectrum analyses (raw spectrum anal-
ysis and sequenced spectrum analysis), and even the experimental setting (all defects, de-
fects per project basis). Finally, the evaluation metrics do also play a role: we observed
some cases where the best performing fault locator varies with the evaluation metric used
(Mean Average Precision, Mean Wasted Effort, acc@n).

These observations have few important consequences for future research in fault lo-
calisation. First, choosing the best fault locator is highly context specific, depending on
both the project and the experimental set-up, therefore these factors need to be consid-
ered before generalising the conclusions. Second, the evaluation metric used to assess

the performance of fault localisation does also matter when drawing the conclusions.

49 ACKNOWLEDGMENTS

Thanks to Boris Cule for helping with MARBLES algorithm. This work is sponsored
by (a) the Higher Education Commission of Pakistan under a project titled “Strengthen-
ing of University of Sindh (Faculty Development Program)"; (b) Flanders Make vzw, the
strategic research centre for the manufacturing industry.

76

CHAPTER

Spectrum Based Fault Localisation: What

about Component Tests ?

ABSTRACT

Agile testers distinguish between unit tests and component tests as a way to automate the bulk of
the developer tests. Research on spectrum based fault localisation largely ignores this distinction,
evaluating the effectiveness of these techniques irrespective of whether the fault is exposed by unit
tests—wwhere the search space is constrained to the unit under test— or by component tests—where
the search space expands to all objects involved in the test. In this chapter, we evaluate sixteen
spectrum based fault localisation techniques and demonstrate that the performance depends a lot
on the presence of faults exposed by unit tests and component tests in the dataset. Therefore, we
urge researchers in fault localisation to distinguish between easy and difficult faults in future

evaluations.

51 INTRODUCTION

Software testing is the activity of executing a program with the intent of finding a
defect. A software test brings the implementation under test in a given state, then admin-
isters a sequence of stimuli and subsequently verifies whether the resulting state corre-
sponds with the expectations. Once a software test exposes a defect, a software engineer
still has to search for its root cause —the fault— and fix it accordingly. To minimise the
search space, testing handbooks distinguish between unit tests and component tests [78, 96].
A unit test isolates the implementation under test (typically a method or a class) from the
rest of the system so that the tester can be confident that the fault is located within the unit.

A component test, on the other hand, exercises the interactions between objects; when a

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

component test exposes a defect, the fault should be in the code that manipulates the
interface. Unfortunately, one cannot entirely rule out the code in the constituting objects
(even with the presence of stubs and mock objects), thus the search space for locating the
fault comprises all the objects involved in the component test.

To help software engineers locate the root cause of a defect, the research community
has forwarded spectrum based fault localisation techniques [20, 21, 31, 85, 97]. These pro-
duce a ranked list of program elements, indicating the likelihood of a program element
being at fault. They do so by analysing the program traces generated by failing and pass-

ing tests.

Given that unit tests and component tests represent different strategies to pinpoint
the location of a fault, one would expect that the research on fault localisation also makes
this distinction. However, none of the currently published evaluations do so: all of them
rely on datasets such as the Siemens set [72]; the Software-Artifact Infrastructure Repos-
itory (SIR) [46], iBugs [74], and the most recent Defects4d [59]. None of these datasets
distinguish between unit tests and component tests, hence it is currently unknown how
faultlocalisation heuristics deal with the more challenging faults involving a larger search

space.

To illustrate the differences, we showcase two examples from Defects4J. An easy
case for fault localisation is fault 3 in project Math. The unit test testLinearCombination-
WithSingleElementArray in test class MathArraysTest calls only a single method (the one
containing the fault) —linearCombination(double[], double[]) in class MathArrays. The
test fails because of an ArraylndexOutOfBoundsException, which is immediately visible
in the stack trace and readily points to the location of the fault. In such cases, any fault
localisation technique —even the most naive one— should have an accuracy of 100%.
In contrast, one of the most difficult faults to locate is fault 74 in project Math. The
test case polynomial in class AdamsMoultonIntegratorTest exposes a fault in method in-
tegrate(FirstOrderDifferentialEquations, double, double[], double, double[]) within class
EmbeddedRungeKuttalntegrator. The test fails because one assertion fails: the returned
value does not match the expected value because of some erroneous state manipulation
earlier in the implementation under test. The faulty method does not appear in the stack
trace, so one needs to search through all the 264 project methods indirectly called by the
test case. Such needle-in-a-haystack cases are real challenges for fault localisation tech-

niques because the search space of potential fault locations is so large.

In this chapter, we evaluate sixteen spectrum based fault localisation techniques to
see how they fare on faults exposed by unit tests and component tests. As such, we make
the following contributions.

1. We refine the Defects4J dataset [59]. We separate faults into two categories: the

78

5.2. FAULT LOCALISATION TECHNIQUES

ones exposed by unit tests (where the search space is rather small) and the ones
exposed by component tests (where the search space is larger).

2. We assess the size of the search space for both unit tests and component tests, show-
ing that there is indeed a significant difference.

3. We construct a comprehensive suite of spectrum based fault localisation techniques
resulting in sixteen different techniques.

4. We evaluate the performance of these sixteen techniques and demonstrate that the
performance depends a lot on the presence of unit test and component test related
faults in the dataset.

In the remainder of this chapter, we list the known variants in spectrum based fault lo-
calisation used during the evaluation in Section 5.2, and then describe the set-up of the
evaluation in Section 5.3, which naturally leads to Section 5.4 reporting the results. After
a discussion on the threats to validity in Section 5.5 and the related work in Section 5.6,

we come to a conclusion in Section 5.7.

52 FAULT LOCALISATION TECHNIQUES

Spectrum based fault localisation is quite an effective class of techniques as reported
in several papers [8, 20, 21, 31, 67, 85, 98]. To understand how these techniques work, there
are four crucial elements to consider: (1) the test coverage matrix; (2) the granularity; (3)
the hit-spectrum; and (4) the fault locator. We explain each of them below.

Test Coverage Matrix. All spectrum based fault localisation techniques collect cov-
erage information of the elements under test in a test coverage matrix. This is a matrix,
where the rows correspond to elements under test and the columns represent the test
cases. Each cell in the matrix marks whether a given element under test is covered by the

test case (1) or not (0).

Granularity. The test coverage matrix conceals an important variation point in spec-
trum based fault localisation: the granularity of the analysis. Different levels of granu-
larity have been studied including statements [11, 64, 65, 85], blocks [16, 67, 68, 69], meth-
ods [10,20,21,31, 60,70, 98], and classes [22, 30]. We will focus on method-level granularity
in this chapter, for the following reasons. In object-oriented testing a method is the small-
est element under test [78]. Also, the stack traces for failing tests are reported at method
level. Finally, there is evidence that developers have a slight preference for method-level

granularity [87].

Basic Hit-Spectrum. Next, the test coverage matrix is transformed into the hit-spectrum
(sometimes also called coverage spectrum) of a program. The hit-spectrum of an element
under test is a tuple of four values (ey, e,, n¢,np). Where ey and e, are the numbers of
failing and passing test cases that execute the element under test and ny and n, are the

79

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

Table 5.1: Popular Fault Locators

Faul Locator Definition
: _ _ %
Barinel [92] 1 &t o
€p =+ nf
1
GP13 [18] €f X (1 + m)
GP19 [18] erx/lep — ep + ep + np — €, + nyl
Ochiai [67] i ‘
V(er + np)es + ep)
op2 [17 e — —=2
p2 [17] f ep +mnp + 1
j_f
Tarantula [11] T S ! o
ef —+ nf + ep —+ np
o
ef +ny ef ep
T* [60] i o X max A e+

6f+nf ep+np

t Inspired from [85], we also use * = 2, which is most thoroughly explored value.

numbers of failing and passing test cases that do not execute the element under test [64].
The standard spectrum based fault localisation implementation, GZoltar, produces basic
hit-spectrum which is used until recent studies [85].

Extended Hit-Spectrum. Recently new techniques have modified the hit-spectrum
via frequent itemset mining [31], inferred invariants [20], code and change metrics [21], and
page rank [98]. For instance, Laghari et al. proposed to extend the hit-spectrum, leverag-
ing patterns of method calls by means of frequent itemset mining [31]. Instead of creating
a single test coverage matrix per program, they create a test coverage matrix for each
executed method. With the extended hit-spectrum, a row in the test coverage matrix cor-
responds to a call pattern of the method; the hit-spectrum (e, e,, n¢, np) of a call pattern
indicates whether or not it is involved in a test case.

Fault Locators. Finally, a spectrum based fault localisation technique assigns a suspi-
ciousness to each element under test by means of a fault locator. The fault locator essentially

80

5.3. CASE STUDY SETUP

Table 5.2: Descriptive Statistics — Defects4J

Project Defects,;! Defects? Defects,,,
Closure 01 00.8%) 131 (99.2%) 132
Math 26 (20.2%) 77 (74.8%) 103
Lang 40 66.7%) 20 (33.3%) 60
Time 01 (03.8%) 25 (96.2%) 26
Chart 05 20.0%) 20 (80.0%) 25
TOTAL 73 @11%) 273 (78.9%) 346

t Defects exposed by unit tests. 1 Defects exposed by component tests.

translates the hit-spectrum into a suspiciousness score. This suspiciousness indicates the
likelihood of the element to be at fault. Table 5.1 lists the most popular and best perform-
ing fault locators reported in recent studies [20, 31, 60, 85].

For the remainder of this chapter, we construct a suite of spectrum based fault
localisation techniques by combining each of the eight best performing fault lo-
cators with the basic hit-spectrum and extended hit-spectrum. For the extended
hit-spectra, we choose hit-spectrum extended via frequent itemset mining for its
simplicity in easy implementation. This results in sixteen different techniques
classified into two families. The family of basic hit-spectrum (called Basic) will
be marked with an index B (as in Ochiaip), the family of extended hit-spectrum
(called Extended) with an index F (as in Ochiaig)

53 CASE STUDY SETUP

Given the sixteen different techniques to evaluate, we now establish the criteria used
for the assessment. We explain the details about the dataset used for the evaluation (De-
fects4J); the refinements we made to that data set to distinguish unit tests from compo-
nent tests; and the evaluation metrics used during the evaluation. We finish with the
research questions and the protocol driving the case study.

81

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

5.3.1 Refining Defects4]

In our experiments, we use real faults from 5 open source java projects: Apache Com-
mons Math, Apache Commons Lang, Joda-Time, JFreeChart, and the Google Closure
Compiler from the established dataset—Defects4J (version 1.1.0) where the fault is in-
side a method [59]. Currently, we could not use faults from the Mockito project due to

the limitation of our tracer.

The Defects4J dataset does not make any classification of the nature on the tests,
hence one cannot deduce whether a given fault is exposed by unit tests or component
tests. Therefore, we separate all of the failing tests for a given faulty version in Defects4J
into either a unit test or component test. We adopt the definitions by Crispin and Gre-
gory [96]. A unit test isolates the implementation under test (typically a method or a

class), whereas a component test exercises the interactions between objects (classes).

Since we have the call traces anyway, we adopt a dynamic analysis heuristic, inspired
by the one of Weijers [100]. In this heuristic, we run all the failing test cases and for each
test case collect all the project classes called during the test execution, thus excluding
all library and framework classes. We use Aspect] to intercept the execution of project

methods.

For example, to trace the execution of methods in project Chart the pointcut becomes
* org.jfree.*.*(..). The pointcut essentially specifies to intercept the execution of any
method in any class in package org.jfree or its subpackages—org.jfree is the top level pack-
age for project Chart. Then, we add the class of the intercepted project method in the set
of called classes. Since a unit test can also use a “mock” class to mock or simulate the real

class, we exclude classes where the name contains variations of the word “mock”.

Next, we enumerate all classes in the set of called classes to determine the class under
test. We use the metric name similarity for textual similarity [101] in the following steps.

o Package P: we calculate the similarity between the package name of the test class and
the called class (Rationale: the project classes and their corresponding test classes
share the same package hierarchy in projects in Defects4J).

e Class C: we calculate the similarity between the class name of test class and the
called class (Rationale: test classes normally have the same name as the class under
test, such as TimeSeriesTests and TimeSeries)

e Method M: we calculate the textual similarity between the test method name and
each of the methods of the called class and choose the method with the highest
textual similarity (Rationale: test methods normally are named by prepending the
word “test” to the method name being tested, such as TimeSeriesTests.testCreateCopy3

tests method createCopy in class TimeSeries).

82

5.3. CASE STUDY SETUP

e Finally, the class with highest similarity score, sum(P, C, M), is determined as be-
ing the class under test. As mentioned in the threats to validity, we did a manual
inspection of the results afterwards.

Next, we remove the class under test from the list of called classes and if the resulting
list is empty the test is classified as a unit test otherwise it is a component test. To avoid
misclassifying a unit test as a component test, we take two extra measures: (i) we remove
super classes of the class under test because polymorphism is an accepted way to promote
reuse between test classes. (ii) we remove the utility classes from the list of called classes.
We identify the class as a utility class, if its name contains the word “Util”. For example,
consider the unit test case testCreateNumber in class NumberUtilsTest in project Lang (Bug
ID 7b). The test case tests method createNumber(String) in class NumberUtils. The method
createNumber(String), which turns the String into Number, first checks if the String is not
empty or does not contain whitespace by calling isBlank(CharSequence) in utility class
StringUtils. Without this extra step, the test would be misclassified as component test,

since it calls class StringUtils besides the class under test NumberUstils.

Finally, we establish which kind of test exposes the fault. When all the failing tests
are component tests, the defect is classified as exposed by component tests. When all the
failing tests are unit tests, the defect is classified as exposed by unit tests. There are also
a few cases where a defect is exposed by both a unit test and a component test. More
precisely, for fault 15 in project Lang, one failing test is classified as a unit test while the
other as a component test. Likewise, for fault 18 in project Chart, two failing tests are
classified as unit tests while the other two as component tests. Since the fault in these
two cases also involves component tests, which increase the search space, we classify
the fault as exposed by component tests. This distinction resulted in a dataset totalling
73 faults exposed by unit tests and 273 faults exposed by component tests, however the
distribution varies a lot over the projects. The Lang project has more unit tests, while
the Closure project has mostly component tests. The particular details are presented
in Table 5.1.

Further details about the algorithm are illustrated in Appendix A.
5.3.2 Evaluation Metrics

Fault localisation heuristics produce a ranked list of elements under test; in the ideal
case the faulty unit appears on top of the list. Several ways to evaluate such rankings have
been used in the past, including relative measures in relation to project size, such as the
percentage of units that need or need not be inspected to pinpoint the fault [60]. However,
absolute measures are currently deemed better for assessment purposes [60, 71]. The
most commonly adopted metrics are wasted effort, acc@n, and mean average precision [8, 20,

83

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

60, 70]. Consequently, we will use these metrics for our evaluation.

To deal with faults spread over multiple locations, we evaluate from the perspective
of a best-case debugging scenario as argued by Pearson et al. [85]. In such a scenario iden-
tifying one of the possible locations is good to understand and consequently repair the
fault. Indeed, once the first faulty element is located it will help developers to find the

remaining ones [8].

Mean Wasted Effort (MWE) — Smaller is better. The mean wasted effort is the mean of the
wasted effort in all ranked lists. The wasted effort is an absolute measure which indicates the
number of non-faulty methods to inspect in vain before reaching the first faulty method.

It is computed as follows:

wasted effort = m + g (5.1)

Where m is the number of non-faulty methods ranked strictly higher than the faulty
method; and # is the number of non-faulty methods with equal rank in the ranked list to
the faulty method. This deals with ties in the ranked list.

acc@n — Higher is better. This is the count of all the faults successfully localised in top-n
positions in the ranked list. Inspired by B. Le et al., we also choose n € {1, 3, 5}, thus
effectively creating three variants of the acc@n namely acc@1, acc@3, and acc@5 [20]. It is
not uncommon for two methods in a ranked list sharing the same suspiciousness scores.
Hence, while computing the acc@n precisely, we break the ties randomly.

Mean Average Precision (MAP) — Higher is better. The mean average precision has tradition-
ally been used in information retrieval to evaluate the ranked lists and is also adopted
for studying fault localisation. It takes all faulty elements into account and emphasises
recall over precision. Thus, it is suitable in scenarios where developers search deep in
the ranked list to find more relevant faulty elements [8]. The mean average precision is the
mean of average precision in all ranked lists. The average precision in a single ranked list is

calculated as following;:

M
average precision = E
i=1

P(i) x pos(i)
number of faulty methods

(5.2)

Where: i indicates the position of a method in the ranked list; M is size of the ranked
list (number of methods ranked); pos(i) is a boolean indicating whether or not the method

th th

at ¢"" position in the ranked list is faulty; P(i) is the precision at i*" position in the ranked

list, computed as:

84

5.3. CASE STUDY SETUP

_ # faulty methods in top i

P(i) (5.3)

7

Our use of several metrics together evaluates fault localisation in several contexts.
Wasted effort does not normalise the rank of faulty methods with respect to total num-
ber of methods in the program. Thus, it is inline with recommendations of Parnin and
Orso in that for the fault localisation to be useful for developers the aim should be to
improve absolute rank rather than percentage rank [71] . In their study, they found that
developers switched to other means of debugging when they did not find faulty state-
ments within the first few top positions in the ranked list. The same concerns are also
addressed by acc@n. However, when developers want to search deep in the ranked list
to find more relevant faulty methods, mean average precision is a more suitable metric [8].
Improving mean average precision may also imply the fault localisation to be useful for au-
tomated fault repair techniques [76]. These repair a fault by modifying potentially faulty
program elements, starting from the top of ranked list, in a brute-force manner until a
valid patch is generated.

5.3.3 Research Questions

The actual case study is driven by the following research questions.

RQ1. Is the search space for component tests significantly larger than the one for unit tests?

Motivation. Here we explore the underlying assumption of our evaluation: whether
component tests indeed represent the challenging case for spectrum based fault
localisation.

RQ2. What is the best performing spectrum based fault localisation technique for the different
projects?

Motivation. This sets the baseline for the evaluation: identifying which of the sixteen
techniques performs the best for the different projects in the dataset, irrespective of
the composition of the test suite.

RQ3. How well do spectrum based fault localisation techniques perform when the faults are
exposed by unit tests?

Motivation. For those faults exposed by unit tests (where we expect the search space to
be rather small), we verify whether it is indeed true that these are the easy cases for
fault localisation techniques.

RQ4. How well do spectrum based fault localisation techniques perform when the faults are
exposed by component tests?
Motivation. Here we verify the performance for the challenging case: faults exposed

by component tests. There we expect the search space to be large, i.e., all project

85

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

methods indirectly called by the test case.

RQ5. How long does it take to produce the ranked lists?
Motivation. This question addresses the inherent trade-off when choosing a spectrum
based fault localisation: not only should they produce good rankings, but they

should also do so within a reasonable time frame.
5.3.4 Evaluation Protocol

To evaluate the sixteen techniques under analysis, we first check out a faulty version
for each project. Then, we run each spectrum based fault localisation for all triggering
test classes, i.e. all test classes which trigger at least one of the project classes modified
to fix the fault as recorded in the Defects4J dataset. As such, we obtain sixteen different
ranked lists for each of the 346 faults in the dataset organised by project (see Table 5.1).
We first evaluate the eight techniques within each spectrum analysis (Extended and Basic)
before going into a more detailed analysis. We use five different metrics for this evalua-
tion: Mean Average Precision (MAP), Mean Wasted Effort (MWE) and acc@1, acc@3, and
acc@s.

Best Performing Fault Localisation Technique. We select the best performing tech-
nique from both spectrum analyses for each individual project, rather than aggregating
the results over all the faults in the dataset. Selecting the best fault localisation technique
on a project by project basis allows to observe how the techniques perform within one
spectrum analysis and between the spectrum analyses. To achieve this, we first rank all
sixteen techniques on each of the five evaluation metrics and then compute the mean of
the ranks. Thus, the technique with the lowest mean rank performing best in all evalua-
tion metrics for a given project is selected as the best performing one.

Tournament Ranking. Once the best fault localisation technique for a given project is
known, we can compare the top techniques between the two spectrum analyses. Here we
adopt the tournament ranking method with the five evaluation metrics [85]. That is, we
set up a tournament structure for each evaluation metric for a given project, and award
one point to the winner (either the technique from Extended or Basic spectrum analysis).
The one with the highest tournament score performs better than its counterpart and is the

overall best performing technique for a given project.

Significance Tests and Effect Size. We perform statistical tests of significance on the
evaluation metrics wasted effort (WE) and average precision (AP). Since we have a matched
pair design and we compare whether one variant is better than its counterpart, we choose
the Wilcoxon signed rank test and run as paired one-tailed test. We favour the non-
parametric Wilcoxon signed rank test over parametric t-test owing to small sample sizes
and non-normal distribution of scores (and also their differences) for both wasted effort as

86

5.4. RESULTS AND DISCUSSION

well as average precision. As per the common practice in software engineering research,
we set the significance level « of 0.05 (there is 5% risk of concluding that the two distri-
butions are different when in fact they are not). We measure the effect size with Cliff’s
delta [102] due to small sample sizes and non-normal distribution of scores (and also
their differences) for both wasted effort as well as average precision.

However, for assessing the search space between unit tests and component tests where
we do not have the matched pairs, we use the unpaired t-test and Cohen’s d for tests of
significance and effect size respectively.

Visualisation. All of these evaluations result in hundreds of results (5 projects x 2
spectrum analyses x 8 fault localisation techniques x 5 evaluation metrics x 2 compar-
isons). To explore all of these, we use kernel density plots as recommended by Kitchen-
ham et al. [103]. These plots provide a detailed overview of the distributions, indicating
the modality and densities. To compare the size of the search space for faults exposed by
unit tests versus those exposed by component tests, we use violin plots [104].

Execution Time. While running the Basic spectrum analysis, the spectrum based fault
localisation spends time to collect the method coverage during the execution of tests (trac-
ing time) and to produce the ranked lists (ranking time). However, the Extended spectrum
analysis induces an extra step: calculating the call pattern per method via the closed item-
set mining algorithm “CHARM" [23]. This extra step (pattern mining) should be treated
separately. Thus, while producing ranked lists we measure the tracing time and ranking
time. When running Extended spectrum analysis, we also measure the pattern mining
time. All the measurements are performed on a Mac machine (2.5 GHz Intel Core i7, 16
GB 1600 MHz DDR3) running MacOSX (10.11.6) using the bash internal variable $SEC-
ONDS (which indicates the number of seconds the script has been running) for a single
run of the heuristic. As we run the tests sequentially, such time measurements are crude,
thus should only be seen as an initial indicator for the relative time during the different
steps.

Replication Package. The refinements we made to the Defects4J dataset and all the
scripts as well as all the results of the evaluation are available at https://github.com/

glaghari/sbfl_unit_component_tests.

54 RESULTS AND DISCUSSION

In this section, we address the four research questions introduced in Section 5.3.3.

RQ1. Is the search space for component tests significantly larger than the one for unit tests?

While separating failing tests into unit tests and component tests in Section 5.3.1, we
make an assessment of the maximum size of search space. When the test case executes,

87

https://github.com/glaghari/sbfl_unit_component_tests
https://github.com/glaghari/sbfl_unit_component_tests

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

Table 5.3: Descriptive Statistics: Called Methods by Test Types

Test Type Number of Tests 1 o
Unit tests 107 5.60 6.28
Component tests 656 1009.23 1192.53

Failing Test Category == Component testt=—] Unit tests

1000+

100+

104

methods executed (log scale)

Compolnent tests Unitltests
Failing Test Category

Figure 5.1: Assessment of the size of the search space for unit tests and component tests.

we count all project methods executed during the test case. Figure 5.1 shows the two
distributions as violin plots. The Y-axis in the plot shows, on log scale, the total number
of project methods executed in the failing test and the X-axis distinguishes between unit
tests (blue) and component tests (red).

The red violin is higher and denser than its blue counterpart, indicating many more
executed methods in component tests. As reported in Table 5.3, the mean (1) as well as
standard deviation (o) of number of called project methods by component tests is consid-
erably larger than the mean and standard deviation in category of unit tests. The t-test
produces p-value 3.618647e-115 and Cohen’s d 1.2, again confirming that the search space
is significantly larger in failing tests categorised as component tests.

The size of the search space is significantly larger for component tests than for
unit tests, confirming that the former is the challenging case for fault localisation
techniques.

88

5.4. RESULTS AND DISCUSSION

Table 5.4: Overall Scores of All Fault Localisation Techniques in Both Families for All
Projects. The Values with Bold-face Indicate the Best Performing Technique.

g :—é‘ Metric Fault Localisation Technique
E kst Barinel D* GP13 GP19 Op2 Ochiai Tarantula T
acc@1 14 15 17 17 17 16 14 17
acc@3 32 29 27 27 27 31 32 28
E acc@5 38 42 36 39 36 40 38 40
MAP 0.1923160 0.1895809 0.1862639 0.1936689 0.1864209 0.1924787 0.1923025 0.1946540
° MWE 67.08 66.49 93.10 71.16 94.21 66.80 67.07 74.83
3 " Rank 4 2 s T 773 s 71 "7 T4 T T2
S acc@1 5 5 7 6 7 5 5 6
acc@3 12 11 15 13 15 11 12 14
B acc@5 16 16 20 19 20 16 16 20
MAP 0.0850438 0.0889960 0.1085065 0.1019495 0.1084298 0.0874437 0.0850319 0.1034512
MWE 246.72 225.09 222.89 293.14 222.89 225.95 246.52 221.78
" Rank /2 T A
acc@1 26 27 26 28 26 29 26 26
acc@3 43 48 45 44 45 47 43 44
E acc@5 58 62 61 58 60 63 58 58
MAP 0.3829402 0.4036051 0.3930052 0.3847035 0.3907057 0.4054287 0.3829402 0.3874786
MWE 11.22 10.45 10.87 12.22 11.29 10.58 11.22 10.90
g “Rank T T A T e
= acc@1 22 22 21 21 21 21 22 21
acc@3 43 45 43 44 43 44 43 44
B acc@5 49 52 51 50 51 51 49 50
MAP 0.3293436 0.3403478 0.3298599 0.3246188 0.3295441 0.3301305 0.3293421 0.3290663
MWE 18.42 17.05 17.49 22.21 17.53 17.29 18.42 17.50
" Rank 6 1~ T3 T 88T T & T2 " "w7T 775"
acc@1 32 37 37 37 37 37 32 37
acc@3 46 50 51 51 51 49 46 51
E acc@5 50 51 53 53 53 52 50 53
MAP 0.6524597 0.6855937 0.7061172 0.7017472 0.7075625 0.6832442 0.6524597 0.7005220
MWE 3.60 2.92 2.83 2.78 3.72 2.93 3.60 2.82
S " Rank 7 s~ T2 1 " & " "% 7 T 773"
= acc@1 18 21 21 21 21 20 18 21
acc@3 41 43 43 42 43 41 41 42
B acc@5 46 48 49 48 49 47 46 48
MAP 0.4913956 0.5183098 0.5238196 0.5206148 0.5225065 0.5065799 0.4913956 0.5197306
MWE 5.48 3.92 3.78 4.43 3.78 4.67 5.48 3.92
" Rank s~ 3y~ 1T T3 T T T2 T T4 T T 7577 T 737
acc@1 5 9 7 8 7 9 5 8
acc@3 7 10 9 9 9 10 7 10
E acc@5 11 14 13 14 13 14 11 14
MAP 0.2629197 0.3367677 0.2901594 0.3063889 0.2901225 0.3377602 0.2629325 0.3100607
MWE 39.12 31.62 34.54 31.35 42.00 30.58 39.12 31.08
g " Rank 7 T2~ " T4 T T3 " " 7"s5 771 "7 7% T 2
E acc@1 5 5 5 5 5 5 5 5
acc@3 7 7 8 8 8 7 7 8
B acc@5 8 9 9 9 9 9 8 9
MAP 0.2027214 0.2005875 0.2201962 0.2164297 0.2200860 0.1996957 0.2013044 0.2166605
MWE 61.08 44.31 39.38 40.65 39.38 44.23 61.08 40.38
" Rank T s~ s T 1 T & T T2 7T T sT T T 7% T T T30
acc@1 8 7 7 7 7 7 8 7
acc@3 13 11 11 11 11 13 13 11
E acc@5 16 13 12 14 12 14 16 12
MAP 0.4190464 0.4048134 0.3765929 0.3902784 0.3723341 0.4191233 0.4190464 0.3856748
MWE 11.48 25.80 29.56 30.76 30.48 23.68 11.48 28.28
Ex " Rank i 3 5T T4 T T T2 77711 "7 T4
© acc@1 10 10 9 9 9 10 10 9
acc@3 15 12 11 11 11 13 15 11
B acc@5 16 14 13 13 13 15 16 12
MAP 0.4985512 0.4740551 0.4298947 0.4278515 0.4298947 0.4831298 0.4986104 0.4243003
MWE 27.16 37.04 39.84 40.52 39.84 35.08 27.16 39.24
" Rank b I - T

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

Table 5.5: Comparisons of the Two Families Showing the Top Ranked Techniques, the Tournament Scores, and the p-values Using All
Faults. The Values with Bold-face Indicate One Variant is Significantly Better Than the Other.

=) Metric Top T -values (&
m Project Technique Score ’ @
S — o LN
® ® ®
s g g
© © © MAP MWE AP WE
Closure 16 31 40 0.1924787 66.80 Ochiaig P>R=5 5.66288e-08 (0.3) 1.413407e-12 (-0.3)
E Math 29 47 63 0.4054287 10.58 Ochiaig P>R=5 8.978418e-04 (0.1) 3.671603e-06 (-0.2)
Lang 37 51 53 0.7017472 2.78 GP19g P>R=5 6.152051e-06 (0.3) 5.063836¢-04 (-0.2)
Time 9 10 14 0.3377602 30.58 Ochiaig P>R=5 1.033401e-02 (0.2) 1.195428e-02 (-0.2)
Chart 8 13 16 0.4190464 11.48 {}& P>R=1 — —
Overall 99 152 186 0.3714714 32.24 — P>R=5 1.413686e-12 (0.2) 6.00831e-20 (-0.2)
Closure 7 15 20 0.1085065 222.89 GP13g R>P=0 — —
B Math 22 45 52 0.3403478 17.05 D*p R>P=0 — —
Lang 21 43 49 0.5238196 3.78 GP13g R>P=0 — —
Time 5 8 9 0.2201962 39.38 GP13p R>P=0 — —
Chart 10 15 16 0.4986104 27.16 Tarantulag R>P=3 1.801039e-01 (0) 1.820786e-01 (-0.1)
Overall 65 126 146 0.2861220 95.69 — R>P=0 — —

6 = Cliff’s delta rounded to one decimal place indicating the effect size— (medium), (small), and (negligible).

{} £ = Barinelg, Tarantulag

90

5.4. RESULTS AND DISCUSSION

oo_OH oﬁ_u._” 0T T

oo_o._u

om_v._“

0T

(e1eoas Boj) yuel anjosqy

oo_o._”

oﬁ_v._u

0T
1

T

oo_o._u oﬁ_u._” 0T T

*S9110391.D J[NEJ [[B 10J OLIBUIDS
3u133nqap 9sed-1s9q B Ul SI01BIO0] J[NEJ [[B uIsn sasATeue wnidads Y1oq 10J SPOYISUI AI[NEeJ JO SYURI IN[OSR JO SUONALISI(:Z'S 9IN3T]

oo_o._“

oﬁ_u._” 0T T

Extended Family

T~

Basic Family

sl

yrew

Bue

alnso|D

Heyo

«L mmmme|niUelel mmms [21YO0 M ZUSIeN M 6TdO W ETdO mmmm Qe [SUUeg mmmm :9NDIUYOD)L T4

91

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

RQ2. What is the best performing spectrum based fault localisation technique for the different
projects?

As mentioned in the protocol, we rank the eight fault localisation techniques from
both spectrum analyses for each project to determine the best performing fault locali-
sation technique. We first do this for the complete test suite, ignoring the distinction
between unit tests and component tests. Table 5.4 provides all the scores per project per
spectrum analysis for the five evaluation metrics. With those we can determine the best
performing technique: the rank is shown below the dashed line and the bold-faced col-
umn indicates the best performing one. Consider the Closure project as an example. For
the Extended spectrum analysis, Ochiaig, performs the best; yet D*y is a close second since
it has better scores for acc@5 and MWE. Similarly, for the Basic spectrum analysis the best
performing technique is GP13g; it has the best scores for all metrics. Furthermore, we no-
tice in Table 5.5 that the Ochiair and GP13p are dominant techniques in their respective

spectrum analyses.

Furthermore, we also notice in Table 5.5 (row “Overall”, column “acc@1”) that with
these top performing techniques, the techniques in the Extended spectrum analysis can
successfully localise 99/346 (~ 29%) defects. While those in the Basic spectrum analysis
can successfully localise 65/346 (~ 19%) defects.

Once the best performing technique is known for each spectrum analysis, we proceed
by comparing the top techniques from both spectrum analyses against one another via
tournament ranking and assess the statistical significance of the results. Table 5.5 pro-
vides the summary of comparisons for all projects. Consider again the Closure project,
the tournament score for Ochiaig (E>B) is 5 meaning that it has better scores for all five
evaluation metrics. In contrast, the tournament score for GP13g (B>E) is 0 meaning that
none of five evaluation metrics scored better. We, therefore, can say that at least for the
Closure project, Ochiaig, is better than GP13g. Moreover, the significance tests confirm
that Ochiaig is also significantly better than GP13g; the p-values shown in last columns
of Table 5.5 are bold and the effect sizes (4) are also medium.

The kernel density plots in Figure 5.2 help explore these comparisons in more detail.
They show the distributions of absolute ranks of faulty method in the ranked lists for all
techniques from both spectrum analyses. The absolute rank (X-axis) is the first position
of any faulty method in the final ranked list. In the ideal ranking, the faulty method
appears at the first position in the ranked list (rank 1). The Y-axis then shows the density
of the corresponding ranks of faulty methods for all defects in a project. Higher densities
for lower ranks are preferable for the rankings to be better; ideal is a density of 100%
and peak for rank 1. Thus to interpret these plots, right-skewed curves are better than
left-skewed ones.

92

5.4. RESULTS AND DISCUSSION

For most projects, Figure 5.2 shows that the high densities and peaks for techniques
from Extended spectrum analysis are more right-skewed than the corresponding ones
from Basic spectrum analysis. However, the shape of the curves varies a lot over the
projects, indicating that the choice of the best performing fault localisation technique is

highly context dependent.

When running against the complete test suite, the best performing fault locali-
sation techniques vary for the projects and within the spectrum analyses and so
does their performance. Owverall, the techniques in Extended spectrum analysis
perform better than those from Basic spectrum analysis. The differences are sig-
nificant yet the effect sizes are small.

RQ3. How well do spectrum based fault localisation techniques perform when the faults are ex-
posed by unit tests?

Here, we evaluate the performance of fault localisation techniques on the faults ex-
posed by unit tests, i.e. the easy cases. Due to space constraints we do not include all
of the measurements used to determine the best performing fault localisation techniques
(the details can be found in the replication package) and instead go immediately to the
summary in Table 5.6. We point out, however, that here as well the best performing tech-
niques varied over the projects and in some occasions even changed compared to the one
used for all of the faults.

Given that the search space is smaller, the fault localisation techniques are expected
to perform better and this is confirmed by the results. For both of the spectrum analyses,
there are very high scores for mean average precision (a very strict measure and its scores
are typically low [20]), acc@1, acc@3, and acc@5, and lower scores for mean wasted effort.
Here, the fault localisation techniques from both spectrum analyses perform far better
than previously (RQ2). Overall, the techniques from Extended spectrum analysis now
successfully localise 45/73 (= 62%) faults, with mean average precision 0.70 and mean
wasted effort ~ 4. Similarly, those in Basic spectrum analysis, now successfully localise
35/73 (= 48%) faults, with mean average precision 0.64 and mean wasted effort ~ 2.

Moreover, GP13g, GP19g, and T*g from Extended spectrum analysis significantly per-
form better than GP195 for project Lang by successfully localising 30/40 faults. For the
single defect in the Closure project, GP19g successfully localises the fault, whereas none
of the technique from Basic spectrum analysis do successfully localise the fault. In con-
trast, it is the opposite for the fault in the Time project. For the five faults in the Chart
project, GP19g only localises 1 fault. However, the four techniques from Basic spectrum
analysis successfully localise 4 faults. Note that in the Closure, Time, and Chart projects

93

Table 5.6: Comparisons of the Two Families for Faults Revealed by Unit Tests.

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

= . Metric Top T p-values (6)
g Project Technique Score
s
— o™ 7o)
® ® ©®
g 8§ §
« « « MAP MWE AP WE
Closure 1 1 1 0.5021186 0.00 GP19g P>R=3 — —
E Math 13 18 20 0.6018914 8.92 Ochiaig P>R=1 — —
Lang 30 37 38 0.8176481 223 {}m P>R=3 1.963428e-04 (0.3) 2.099668e-03 (-0.2)
Time 0 0 1 0.2500000 0.00 {}go P>R=0 — —
Chart 1 2 4 0.3995238 5.60 GP19g P>R=0 — —
Overall 45 58 64 0.7000663 481 — P>R=2 — —
Closure 0 1 1 0.1709585 2.00 {}m R>P=0 — —
B Math 12 20 22 0.6192901 423 D*p R>P=4 5.564735e-01 (0) 7.416792e-01 (0)
Lang 18 35 38 0.6373810 1.52 GP19g R>P=0 — —
Time 1 1 1 1.0000000 0.00 {}po R>P=4 — —
Chart 4 4 5 0.8500000 1.00 {}g3 R>P=5 — —
Overall 35 61 67 0.6440786 2.44 — R>P=3 9.953934e-01 (-0.2) 8.068516e-02 (0.2)
¢ = Cliff’s delta rounded to one decimal place indicating the effect size— (medium), (small), and (negligible). {}rg1 = GP13g, GP19g, T*g.

{}E2 = D*g, Op2g, GP13g, Barinelg, Ochiaig, GP19g, Tarantulag, T*g. {}B1 = D*p, GP13p, Barinelg, Ochiaig, Tarantulag, T*p.
{}B2 = D*p, Op2g, GP13g, Barinelg, Ochiaig, GP19g, Tarantulag, T*g. {}B3 = D*g, Op2g, GP13g, Ochiaig.

94

5.4. RESULTS AND DISCUSSION

Henquere], ‘doutreq = ¢4 {}

H6TdD ‘Fg1dD = M {}
*(31q181139u) pue ‘([[ewrs) ‘(WNIpaur) —azIs 199JJ° Y1 Junedrpul ade[d [eWIdSP SUO 0) PIPUNOI BI[DP SJIID = ¢

— — 0=d<d — 89°0CT L9¢E€I6T0 08 9 0¢ [e12A0
— — 0=d<Y Hemuere], QT'€E €398v0¢t°0 ¢l IT 9 eyd
— — 0=d<¥d de1dD 960 0006810 8 L 1% ouIL],
— — 0=d<d dzdo sz'8 69696620 IT 8 ¢ 3ue a
— — 0=d<Hd 9.d 8€'1C S6S19vC0 0¢ S¢ 01 JIeN
— — 0=d<Hd de1dD 8SPCT L6TO80T0 61 vl L 2INSO[D
(T'0-) 12-9609S4S'v (T°0) TI-9496891F S=d<d — 6V'6¢ £2LES8T 0 €Cl S6 ¢S [e12A0
(0) 2028856129 (I'0) T0RTII6IIV'S +=d<d ea{} 0SCI ¥2689CH°0 €l IT £ 1eyD
(€°0-) 209€S29€0°'T (£°0) €0-296+049'C S=d<d arerp() gL'1E L0LTTIVE0 €1 0T 6 ouIly,
(€°0-) 209896164'T (¥°0) €0-9€64+8T'S S=d<d “@{} S0y 9SS0e8Y°0 ST 174 3uet 3
(€°0-) 80-988€ST6°€ (£°0) ¥0-2LC1+C9'Cc S=d<d q.d T6'01 CI8IIVE D 1% 0o St JIeN
(€°0-) 2I-9€¥819S'T (€°0) 80-°1+00TL'8 S=d<d drenpQ 1€°49 ISTTI06T0 6¢ 0oc 91 2INSO[D
aM dv dMIN dVIN o o)
8 8 8
® ® ®
Ul w =
W_u._
21005 onbruyday, Poloig =
() sentea-d L doy, JLIPIN =

's359], Jusuodwio) Aq pa[eaAdy SINeq Joj SaI[Iure] omJ, 93 jo suosiredwoy :/°G [qel

95

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

the samples are really small. Overall, the Basic spectrum analysis performs a little better
than the Extended spectrum analysis, however the difference is insignificant with small
effect size.

For both families, all techniques perform far better for faults exposed by unit tests
only, thus confirming that such faults are the easy case for fault localisation.

RQ4. How well do spectrum based fault localisation techniques perform when the faults are ex-
posed by component tests?

Here as well, we omit the details for the selection of the best performing techniques
and immediately move towards the summary in Table 5.7. For the faults exposed by
component tests, the performance of the techniques from both spectrum analyses has
decreased compared to the results in RQ2. The very same top performing techniques
from Extended spectrum analysis, now can successfully localise 53/273 (~ 19%) faults.
Also the mean average precision 0.29 is lower and the mean wasted effort ~ 39 is higher.
Likewise, for the Basic spectrum analysis, we can now only successfully localise 30/273 (~
11%) faults. Here as well, the mean average precision 0.19 is lower and the mean wasted
effort ~ 121 is higher. Additionally, we observe that for project Lang GP13g and GP19g
significantly perform better than Op2p with effect size medium. Overall, the Extended
spectrum analysis performs significantly better than the Basic spectrum analysis. Yet,
the small effect size suggests that the practical differences between the two spectrum

analyses are small.

Figure 5.3 juxtaposes the kernel density plots for unit tests and component tests which
allows us to visually explore these differences in a bit more detail. Notably, the curves
are more right-skewed with higher peaks for faults exposed by unit tests.

These observations indicate that when the techniques are evaluated on the whole
dataset without distinction of the kind of tests involved, the better performance of fault
localisation techniques largely follows from the easy-to-localise defects exposed by unit
tests.

To asses the performance variation between the faults exposed by unit tests and com-
ponent tests, we can compare the two proportions on acc@1 metric given by Extended
spectrum analysis as it has significantly better results on faults exposed component tests.
Overall, the Extended spectrum analysis successfully treats 45/73 (=~ 62%) faults exposed
by unit tests and 53/273 (= 19%) faults exposed by component tests. At the 95% confi-
dence level, the performance difference is 4% with confidence interval (30%-54%) and
the 12% of margin of error.

96

5.4. RESULTS AND DISCUSSION

Table 5.8: Summary of Analysis Times.

Time

Family Project
Tracing Sequence Generation Ranking Total

Closure 03:35:23 03:18:19 01:27:08 08:20:50
Math 01:59:35 00:02:53 00:01:34 02:04:02
E Lang 00:20:54 00:00:51 00:00:38 00:22:23
Time 00:12:05 00:00:57 00:00:44 00:13:46
Chart 00:12:40 00:00:29 00:00:25 00:13:34
Closure 01:27:26 N/A 00:02:16 01:29:42
Math 01:17:40 N/A 00:01:10 01:18:50
B Lang 00:15:13 N/A 00:00:38 00:15:51
Time 00:09:37 N/A 00:00:18 00:09:55
Chart 00:09:44 N/A 00:00:16 00:10:00

When evaluating against faults exposed by component tests, the performance of
spectrum based fault localisation decreases from 30% to 54%. This confirms that
component tests are the difficult case, and that the performance of a spectrum
based fault localisation technique depends a lot on the presence of faults exposed
by unit tests and component tests in the dataset.

RQ5. How long does it take to produce the ranked lists?

Table 5.8 provides an overview of the times for each of the phases in spectrum based
fault localisation. We see that the execution times are mostly comparable although the
Extended spectrum analysis is indeed slower. However, the Closure project is a notable
outlier: ~ 83 hours versus 13 hours. This can be explained by the observation that there
are lots of tests in Closure project which call substantially more methods and thus take
longer to analyse. However, as the defects in Closure are exposed by component tests
(where the Extended spectrum analysis performs better) this long analysis time results in
a better accuracy. Yet, the extra overhead for defects exposed by unit tests is not worth-
while.

97

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

FL Technigque:= Barinel= D* == GP13= GP19= Naish2= Ochiai== Tarantula= T*

Component tests Unit tests

0.6

Ajwe4 aiseg

Kjiwre papusix3g

1 10 100 100 1000

1000 1 10
Absolute rank (log scale)

Figure 5.3: Distributions of absolute ranks of faulty methods for both spectrum analyses
distinguishing between unit test and component test related faults.

The Extended spectrum analysis takes more time to produce the result, however
the difference is negligible for smaller test suites. Contrary, the analysis time
quickly grows for large tests and projects where Extended spectrum analysis com-
paratively takes more time than Basic implicating the risk of Extended spectrum
analysis to become impractical.

55 THREATS TO VALIDITY

As with all empirical research, we identify those factors that may jeopardise the va-
lidity of our results and the actions we took to reduce or alleviate the risk. Consistent

98

5.5. THREATS TO VALIDITY

with the guidelines for case studies research (see [80, 81]), we organise them into four

categories.

Construct validity

Evaluation metrics. In this research, we evaluate sixteen different spectrum based fault
localisation techniques. To reduce the risk on construct validity, we evaluated with five
different metrics assessing different perspectives on what is deemed better. The use of
an absolute metric (wasted effort) and also acc@n alleviates concerns on relative mea-
sures [71]. While the evaluation of fault localisation on mean average precision has im-
plication for developers who search deep in the ranked list to find more relevant faulty

methods and for automated fault repair techniques.

Separating tests into unit and component tests. Our heuristic to distinguishing between
unit tests and component tests may misclassify certain tests compared to the intent of the
original developers. We did a manual inspection of the results, hence the likelihood of
misclassification is small. The results are available in the replication dataset and can be
scrutinised by fellow researchers.

Internal validity

Method Level Granularity. We opted for method-level granularity for this comparison,
mainly because there is evidence that this is the preferred by developers [87]. Neverthe-
less, the distinction between unit tests and component tests might not have such a big
impact on coarse-grained granularity levels, in particular class level. Further analysis is
needed to verify this.

Selection of Relevant Tests. In the case-study protocol, we run the spectrum based fault
localisation for those test classes which trigger at least one of the source classes modi-
fied to fix the fault as recorded in the Defects4J dataset. However, in some cases the
number of tests is relatively large. While we need to reduce test-suite size for increased
efficiency (reduction in run-time) without compromising effectiveness (accuracy) of fault
localisation, there is also an empirical evidence that the amount of tests used in the fault
localisation has an effect (both positive and negative) on fault localisation effectiveness—
there is a trade-off between test-suite reduction and fault localisation effectiveness [105].
How to strike the right-balance is an open issue in the spectrum based fault localisation

community.

External validity

Several evaluation metrics together. We use several evaluation metrics together which
implies a stringent comparison. Evaluation on a single metric alone may result in a dif-
ferent interpretations. A notable example in this chapter is comparison on project Chart
(see Figure 5.2). If only evaluated on Mean Wasted Effort, the extended hit spectrum per-

99

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

forms better than the basic one. However, when comparing on several metrics together
the result is different. This observation signals that the evaluation metric used to evalu-
ate the fault localisation has an effect on its accuracy. Thus, it is unwise to generalise the

findings, but instead one should value metric-specific insights.

Data-intensive and Mixed-language projects. In our study, we experimented with 346 real
faults from Defects4J dataset; the most recent defect dataset currently available. Obvi-
ously, it remains to be seen whether similar results would hold for other defects in other
systems. In particular, we don’t know how well such fault localisation heuristics will
work in data-intensive projects (where faults can sit in the data driving the application)
or projects with complex technology stacks (e.g. mixing several programming languages
and libraries).

Reliability and Verifiability

The external tool we rely upon is the open source library SPMF!, for frequent itemset
mining [106]. All of our scripts, results, etc. are available online in replication package
(See Section 5.3.4) for reproducibility and verifiability (other researchers can confirm or
refute the findings on other projects easily).

56 RELATED WORK

The Tarantula tool provided the foundation for research on spectrum based fault lo-
calisation [11]. Afterwards, several researchers made attempts to increase the effective-
ness of spectrum based fault localisation, evaluating them differently including work on
(a) finding the optimal fault locators, (b) changing the hit-spectrum, and (c) using machine
learning to learn to rank. These state-of-the-art techniques spawned a new area of research
called (d) fault repair, where the distinction between unit tests and component tests may
also be relevant. Finally, the de facto standard dataset for this line of work is Defects4d,
and we also discuss another extension thereof.

(a) Fault locators. Abreu et al. introduced Ochiai, used in the molecular biology do-
main, into spectrum based fault localisation and demonstrated better performance [67].
Steimann et al. defined and evaluated T* (which multiplies the suspiciousness given by
Tarantula with confidence) and there as well demonstrated better performance [60]. Lu-
cia et al. applied 20 well-known association measures from data mining on fault localisa-
tion and concluded that 10 out of 20 association measures were comparable to Tarantula
and Ochiai [16]. Naish et al. proposed a couple of fault locators through a theoretical
model and established that they performed better than existing ones [17]. Later studies
confirmed that one (Op2) is among the best performing fault locators [20, 31, 85], which

Thttp://www.philippe-fournier-viger.com/spmf/

100

http://www.philippe-fournier-viger.com/spmf/

5.6. RELATED WORK

is corroborated in this study. Yoo evolved an entirely different set of fault locators (GP01-
GP30) that performed better than existing ones [18]. Later, B. Le et al. found that GP13
and GP19 perform better [20].

(b) Hit-Spectra. Yilmaz et al. proposed time-spectrum as a spectrum based fault local-
isation variant exploiting a different hit spectrum [19]. Instead of coverage of methods,
time-spectrum uses traces of method execution times collected from both passing and
failing tests. The potential causes of faults are identified as deviations of failing tests
from behaviour models created from time spectra collected in passing test runs. Laghari
et al. proposed to extend the hit-spectrum, leveraging patterns of method calls by means
of frequent itemset mining—and demonstrated the technique was more effective on De-
fects4d [31]. It is this latter variant that is used in this study.

(c) Learning to rank. Xuan and Monperrus proposed MULTRIC, a learning-based ap-
proach which combines multiple ranking metrics to learn and then rank [70]. They demon-
strated on seeded faults that MULTRIC improved upon existing fault locators. Similarly,
B. Le et al. proposed Savant—a learning to rank approach which exploited inferred likely
method invariants mined from passing and failing test cases—and established that it was
more effective on Defects4J [20]. Likewise, Sohn and Yoo have used code and change met-
rics (age, churn, complexity, ...) as features in learning to rank approach, establishing the
technique is more effective on Defects4J [21].

(d)Test-suite reduction and diagnosability. Since the number of tests has an effect on the
run-time of the spectrum based fault localisation, one of the improvements has been to
reduce the test-suite size without sacrificing the fault localisation accuracy. Yu et al. per-
formed the first of these investigations [105]. They found that the statement based reduc-
tion affected the fault localisation accuracy negatively, while the vector based reduction
had negligible effects. Perez et al. propose a new metric, named DDU, with a goal to
increase diagnosability of a test-suite in order to increase the effectiveness of spectrum
based fault localisation [107]. In its preliminary evaluation, the optimisation of test-suites
with DDU result in 34% gain in accuracy.

(e) Automatic Fault Repair is a recent research area aiming to automatically repair soft-
ware faults [108]. Many of these techniques rely on fault localisation, in general, and
spectrum based fault localisation, in particular, to identify the lines of code containing
the fault and then applying a series of patches and running the test suite in the hope
of obtaining a series of passing tests [109]. Initially these patches were generated in a
brute-force manner, but recent approaches prune the amount of generated patches [110].
Our research complements this approach: rather than pruning the patch space our work
suggests that pruning the search space focussing on faults exposed by unit tests may be a
viable strategy. Note however that Martinez et al. demonstrated the critical role of the test

suite, pointing out that many patches pass the test suite (thus result in a green verdict),

101

CHAPTER 5. SPECTRUM BASED FAULT LOCALISATION: WHAT ABOUT COMPONENT TESTS ?

yet may still be incorrect [111].

Given that unit tests and component tests represent different strategies to pin-
point the location of a fault, one would expect that the research on fault locali-
sation and fault repair also makes this distinction. However, even for the most
recently proposed spectrum based fault localisation ([20, 21, 31, 98]) and fault
repair techniques ([110, 111]) it is currently unknown how they deal with the
more difficult faults exposed by component tests.

Defects4dJ extensions. The main conclusion of our work is that researchers should dis-
tinguish between easy and difficult to locate faults when evaluating automatic fault local-
isation as well as fault repair techniques. To that extent, we extended Defects4J—the de
facto standard dataset for this line of work with an extra qualitative property: an assess-
ment of the type of test exposing the defect. Pertinent to mention here is also the recent
work by Sobreira et al. which provides fine-grained details of the patches, especially the
qualitative properties [112]. The availability of such fine-grained details about bug fixes

within datasets opens opportunities to gain deeper and more actionable results.

57 CONCLUSION

In this chapter, we refined the Defects4J dataset distinguishing between unit tests and
component tests. We established that the search space to locate the defect is rather small
for defects exposed by unit tests (tests call fewer methods) thus represents the easy case,
while the search space is significantly larger for defects exposed by component tests (tests
call a lot of methods) thus represents the challenging case. Based on this distinction, we
evaluated sixteen spectrum based fault localisation heuristics to see how they cope with
defects exposed by unit tests or component tests. Not surprisingly, spectrum based fault
localisation performs rather well for defects exposed by unit tests (acc@1 between 48%
and 62%), however the performance decreases for defects exposed by component tests
(acc@1 between 11% and 19%).

We have shown that the performance of spectrum based fault localisation heuristics
depends a lot on the presence of faults exposed by unit tests or component tests in the
dataset. This has an important consequence for future research in fault localisation. The
evaluations with datasets containing lots of defects exposed by unit tests produce a biased
view on the actionability of spectrum based fault localisation: they are very effective for
easy to localise faults, but there the tool support hardly matters. Yet, for the harder to
localise faults, the performance of spectrum based fault localisation still leaves a lot of

102

room for improvement. The good news is that the more recent approaches perform better
on these more challenging cases, so there are viable avenues for future work.

Moreover, our work also has some implication with respect to automatic fault repair.
It suggests that pruning the search space focussing on defects exposed by unit tests is
a viable strategy. With this strategy, the fully automated fault repair techniques should
focus on the low-hanging fruit and automatically repair the easy defects, this way freeing

up resources and permitting humans to focus on the more difficult ones.

58 ACKNOWLEDGMENTS.

This work is sponsored by (a) the Higher Education Commission of Pakistan under a
project titled “Strengthening of University of Sindh (Faculty Development Program)"; (b)
Flanders Make vzw, the strategic research centre for the manufacturing industry; (c) the
Conseil Régional Hauts-De-France; Nord Pas de Calais — Picardie.

103

104

CHAPTER

Conclusions

Spectrum based fault localisation aids developers in locating the fault, once the tests de-
tect the presence of those faults in the system. Since they only require the faulty program
and the set of test cases that expose the fault, they are considered as lightweight. Spec-
trum based fault localisation techniques do not reason about the fault, rather pinpoint
the fault by means of statistical analysis of the coverage information. While this simple
process ideally suits to locate the faults when the tests fail, this is not always effective:

many times the exact location of the faults is missed.

In this thesis, we attempted to increase the effectiveness of spectrum based fault local-
isation by exploring the use of closed itemset mining and sequence mining. By leveraging
extra coverage information coupled with closed itemset mining and sequence mining, and
analysing the patterns in the traces significantly improved the effectiveness of spectrum

based fault localisation.

Additionally, we assessed the effectiveness of spectrum based fault localisation from
a new perspective. We demonstrated that spectrum based fault localisation techniques
were more effective on the faults exposed by unit tests, where the search space to locate
the fault is sparse. Contrarily, the faults exposed by component tests represented the
challenging cases for spectrum based fault localisation techniques manifested by their
decreased effectiveness in pinpointing those faults. There the search space was compar-
atively vast, which implies that the techniques should be improved further to filter out

the benign elements.

6.1 SUMMARY OF CONTRIBUTIONS

The main contributions of this thesis can be summarised as follows.

CHAPTER 6. CONCLUSIONS

We proposed the use of closed itemset mining in spectrum based fault localisation. To
that end, we first replicated a previous study, which used the sequence of method calls
by sliding a window over the trace to locate the faulty classes [22]. We computed the
sequence of method calls via closed itemset mining [23] and observed that closed itemset

mining did boost the fault localisation effectiveness.

Next, we took the use of closed itemset mining from course-grained granularity classes to
fine-grained granularity methods, to locate the faulty methods. Thus, we modified the hit-
spectrum with the patterns of method calls via closed itemset mining. We demonstrated
that the use of closed itemset mining increased the effectiveness of spectrum based fault
localisation and remained more stable.

We also explored what is the effect of sequence mining, by replacing the closed itemset
mining with sequence mining and observed that sequence mining also increased the effective-
ness of spectrum based fault localisation. However, sequence mining became too expensive
in terms of running time for large projects. Moreover, we analysed the performance of 47
fault locators and indicated the best performing ones on the Defects4J dataset.

Finally, we separated the faults in Defects4J into two categories; faults exposed by
unit tests and faults exposed by component tests. We showed that, for the faults exposed
by unit tests, the search space to locate the fault is smaller. Whereas, the search space
was larger for faults exposed by component tests. We demonstrated that, spectrum based
fault localisation techniques performed far better on faults exposed by unit tests than to
faults exposed by component tests, which confirmed that the faults exposed by unit tests
are comparatively easier to locate. On the other hand, the performance of spectrum based
faultlocalisation techniques decreased when faced with the faults exposed by component
tests, which confirmed that these are challenging cases and suggests that future fault
localisation techniques should optimise for these difficult-to-locate faults.

6.2 SUMMARY OF RESEARCH QUESTIONS

This section briefly summarises the research questions explored in this thesis along
with highlights of main findings.

RQ. Do the patterns of method calls extracted via closed itemset mining help boost
the fault localisation accuracy in locating the faulty classes? In Chapter 2, we
mainly explored this research question. We created a new fault localisation tech-
nique (SPEQTRA) to locate the faulty classes and replicated a previous study (AM-
PLE). We found that SPEQTRA performed significantly better than AMPLE owing
to the use of itemset mining algorithm.

RQ3.1 Which ranking results in the lowest wasted effort: raw spectrum analysis or pat-

106

6.2. SUMMARY OF RESEARCH QUESTIONS

terned spectrum analysis? In Chapter 3, we modified the basic hit-spectrum (raw
spectrum analysis) by incorporating the patterns of method calls obtained via item-
set mining (patterned spectrum analysis) and compared the two experimentally. We
found that for 68% cases, the patterned spectrum analysis ranked the faulty method
higher than its counterpart raw spectrum analysis, implying a reduced wasted effort.

RQ3.2 How often do raw spectrum analysis and patterned spectrum analysis rankings
result in a wasted effort < 10? In Chapter 3, next in the comparison, we evaluated
which of the two variants ranked the faulty method within a reasonable range of top
locations (10). We found that patterned spectrum analysis ranked the faulty method

in the top 10 for 62% of the cases against 48% for raw spectrum analysis.

RQ3.3 How does the number of triggered methods affect the wasted effort of raw spec-
trum analysis and patterned spectrum analysis? Finally in Chapter 3 we analysed
the trend, the number of methods triggered and the position of faulty method in
the ranked list, to measure the effect of the size of the ranked list over the rank of
faulty methods. We found that patterned spectrum analysis was more stable while for
raw spectrum analysis the faulty methods ranked lower (implying increased wasted
effort) as the size of the ranked list increased.

RQ4.1 What is the baseline performance of raw spectrum analysis? In Chapter 4, we
used 47 known fault locators for raw spectrum analysis to establish a baseline. We
found that raw spectrum analysis placed the faulty method at top of the ranked list
(acc@1) for 18% of the cases with the mean wasted effort 96.73.

RQ4.2 How much can sequenced spectrum analysis improve upon raw spectrum anal-
ysis? In Chapter 4, we modified the hit-spectrum via sequence mining algorithm
where the patterns of method calls are both order-preserving and allow repetitive
method calls, thus resulting into sequenced spectrum analysis. We found that com-
pared to raw spectrum analysis, sequenced spectrum analysis gains 12% improvement
for ranking the faulty method at top of the ranked list (acc@1) and reduces the av-
erage wasted effort from 96.73 to 25.88.

RQ4.3 Are there project specific differences between the rankings? In Chapter 4, we
also compared the performance of the two variants on per project basis. We found
that sequenced spectrum analysis performs better than raw spectrum analysis for four
out of five projects. For the fifth project the results are practically indistinguishable.

RQ4.4 Is sequenced spectrum analysis efficient compared to raw spectrum analysis?
Finally in Chapter 4 we gauged the timings to produce the ranked lists. We found
that compared to raw spectrum analysis, sequenced spectrum analysis with an addi-

tional time overhead became very expensive for large project.

107

CHAPTER 6. CONCLUSIONS

RQ5.1 Is the search space for component tests significantly larger than the one for
unit tests? In Chapter 5, we added another perspective for assessment of spectrum
based fault localisation, component test failures as challenging and unit test failures
as easy cases for fault localisation. We confirmed this by establishing that the size
of the search space to locate the fault is significantly larger for component tests than

for unit tests.

RQ5.2 What is the best performing spectrum based fault localisation technique for
the different projects? In Chapter 5, we constructed a suite of spectrum based fault
localisation techniques to evaluate them for easy and challenging cases. We cate-
gorised the techniques into two families, Extended represented by patterned spec-
trum analysis and Basic represented by raw spectrum analysis. Here we established
a baseline performance of the techniques on whole dataset irrespective of the dis-
tinction between easy and challenging cases. We also found that the performance
of Extended spectrum analysis is better than those from Basic spectrum analysis

significantly with small effect sizes.

RQ5.3 How well do spectrum based fault localisation techniques perform when the
faults are exposed by unit tests? In Chapter 5, we confirmed that both families of
spectrum based fault localisation perform far better for faults exposed by unit tests,

thus such faults represent the easy cases.

RQ5.4 How well do spectrum based fault localisation techniques perform when the
faults are exposed by component tests? Next, in Chapter 5, we confirmed that the
performance of spectrum based fault localisation decreased a lot for faults exposed
by component tests, thus such faults are indeed the difficult cases.

RQ5.5 How long does it take to produce the ranked lists? Finally, in Chapter 5, we
also gauged the time taken by both families to output the ranked lists. We con-
cluded that the time differences are negligible for smaller test suites, however, the
Extended spectrum analysis comparatively takes more time than Basic for large tests

and projects.

6.3 OUTLOOK

In the last decades, fault localisation has regained the attention of researchers: many
new improved techniques have been proposed, user studies conducted showing their
positive assistance in the debugging, etc. Yet, such techniques are still not widely adopted;
the prevalent debugging method in developers is still the use of print statements [113].

One possible reason to account for why such automated fault localisation are seldom

108

used in practice can be that the prevalent evaluation strategy is quantitative in nature.
The basis of the metrics used in such evaluations boils down to the number of faults
in a dataset successfully treated by the techniques. Thus, the inherent premise of such
evaluation strategy implies that there exists one-size-fits-all fault localisation technique,
which we have empirically learned is not true.

Therefore, the fault localisation community should also focus in future fault locali-
sation research to annotate the faults, such as we have annotated the faults as easy- or
difficult-to-locate in Chapter 5. Similarly, the recent detailed fine-grained analysis of the
patches of Defects4dJ by Sobreira et al. provides the opportunity to evaluate the fault
localisation techniques to gain deeper and more actionable understanding of the tech-
niques [112]. This should lead us to be able to link the effectiveness of the fault localisa-
tion with the properties of the tests, the coverage information, etc. so that we can choose
a particular fault localisation technique for a certain scenario. This would not only aid
practitioners in the debugging sessions, but also the fault repair researchers to improve
the repair techniques, since automated fault repair depends on fault localisation.

Moreover, considering the study of Beller et al. [113], it appears that we are far from
transferring automated fault localisation to industry. Thus, to learn the difficulties and
the requirements of developers regarding fault localisation, we need more user studies—
which up until now are very scarce. Therefore, the community should also consider
user studies especially with the aim to learn how to transfer fault localisation research
to industry.

109

110

Appendices

APPENDIX A .

Defects4d Refinements

Here, first we elaborate the algorithm explained in Section 5.3.1 to classify the faults in
Defects4J into either exposed by unit tests or component tests. Then, we illustrate the pro-

cess with two representative examples; one example for each.

Al ALGORITHM TO CATEGORISE THE FAULTS

The algorithm explained in Section 5.3.1 is formally stated in Algorithm 1. In the
input, T is the set of failing test cases for the faulty version of the project V¢q.:. For each
failing test case ¢ in the set 7' (Line 1 in Algorithm 1), the algorithm runs the test case ¢t on
the faulty version of the project Vi, to collect the classes C called during the execution
of the test case (Line 3 in Algorithm 1). Along with the called class, the algorithm also
collects the corresponding executed methods of the class.

Next, the algorithm iterates over the set of called classes C' and determines the class
under test ¢, which is the class with highest similarity score with the test case ¢ (Lines
4-9 in Algorithm 1). Then, the class under test ¢, its super class, and Utility and Mock
classes are removed from C' (Lines 10-13 in Algorithm 1). Last, the test case ¢ is classified
as component test if C' is not empty (Lines 14-15 in Algorithm 1), otherwise its marked
as unit test (Lines 16-17 in Algorithm 1).

Finally, the algorithm categorises the faulty version of the project V4. as related to
Component tests if any of the failing test case ¢ in T’ is classified as Component test (Lines
18-21 in Algorithm 1), otherwise categorises it as related to Unit tests (Lines 22-23 in
Algorithm 1).

To determine the class under test c;, the similarity score between the called class c and
test case ¢ is calculated in the procedure SimilarityScore(c, t). The score is determined by

APPENDIX A. DEFECTS4J REFINEMENTS

Algorithm 1: Categorise Fault

O N U W N =

10
11
12
13

14
15
16
17

18
19
20
21

22
23

Input: Vigu, T

Output: category
begin
fort € T do

C <— Coverage(t, Viquit)
Ct < C[O]
cg.score <— 0
for c € C do
c.score +— SimilarityScore(c, t)
if c.score > c;.score then
L Ct < C

C.remove(c;)
force C do
if c.IsSuper(c; or c.IsUtil() or c.IsMock()) then
L C.remove(c)

if |C| > 0 then

| t.type «+— Component test
else

| t.type «— Unit test

fort € T do

if t.type = Component test then
category «+— Component tests
return category

category <— Unit tests
return category

Procedure SimilarityScore(c, t)

Input: c,t

Output: score

PackageScore +— NameSimilarity(c.PackageName, ¢t.PackageName)
ClassNameScore <— NameSimilarity(c.Name, ¢.ClassName)
MethodNameScore <— 0

for m € c.Methods do

TmpMethodNameScore «— NameSimilarity(m.Name, t)

if MethodNameScore < TmpMethodNameScore then

L

MethodNameScore +— TmpMethodNameScore

score «— Sum(PackageNameScore, ClassNameScore, MethodNameScore)
return score

114

A.2. ILLUSTRATIVE EXAMPLES

Table A.1: Called classes during the execution of failing test case in project Lang (Bug ID
6b)

Class Name P C M Sum
org.apache.commons.lang3.StringUtils 1.00 1.00 0.00 2.00
org.apache.commons.lang3.text.translate.UnicodeUnescaper 0.71 0.00 0.00 0.71
org.apache.commons.lang3.CsvEscaper 1.00 0.00 0.00 1.00
org.apache.commons.lang3.text.translate.OctalUnescaper 0.71 0.00 0.00 0.71
org.apache.commons.lang3.text.translate.EntityArrays 0.71 0.00 0.20 091
org.apache.commons.lang3.CsvUnescaper 1.00 0.00 0.00 1.00
org.apache.commons.lang3.text.translate.LookupTranslator 0.71 0.00 0.00 0.71
org.apache.commons.lang3.text.translate.UnicodeEscaper 0.71 0.00 0.00 0.71
org.apache.commons.lang3.text.translate.CodePointTranslator 0.71 0.00 0.00 0.71

org.apache.commons.lang3.text.translate. NumericEntityUnescaper 0.71 0.00 0.00 0.71
org.apache.commons.lang3.text.translate.CharSequenceTranslator ~ 0.71 0.00 0.00 0.71

org.apache.commons.lang3.text.translate.AggregateTranslator 0.71 0.00 0.00 0.71
org-apache.commeons-lang3-StringEscapeUtils 1.00 0.67 0.25 1.92
org-apache.commens-lang3-ArrayUtils 1.00 0.33 0.00 1.33

the textual similarly between the package names, class names, and the test case name
with method names of the class. The textual similarity is calculated with the metric name
similarity [101]. The textual similarity between the package and class names of c and ¢
is calculated in Lines 1 and 2 respectively. While the textual similarity between ¢ and
the highest matching method in c is calculated in Lines 4-7. The final similarity score
between the called class c and test case ¢ is the sum of matching scores of package name,
class name, and method name (Line 8).

A2 ILLUSTRATIVE EXAMPLES

Now, we can explain the process with a running example with the help of Algorithm 1.
Consider the faulty version 6b of project Lang in Defects4J with one failing test case
org.apache.commons.lang3.StringUtils Test.testEscapeSurrogatePairs that exposes the fault.
When running the test case, the collected called classes C' are listed in Table A.1. The
class org.apache.commons.lang3.StringUtils is determined as class under test, since it has
highest matching score. Next, the algorithm removes the Utility classes (last two rows in
Table A.1). Since there are still called classes remaining in the set C' once the class under
test and Utility classes are removed, the algorithm classifies the test case as component
test. Finally, the algorithm categorises the fault 6b as exposed by component tests as there
is only one failing test case, which is categorised as component test.

Similarly, consider the faulty version 7b of project Lang in Defects4J with one failing
test case org.apache.commons.lang3.math.NumberUtilsTest.testCreateNumber that exposes
the fault. The called classes C, collected during the execution of the test case, are listed

in Table A.2. The class org.apache.commons.lang3.math.NumberUtils is determined as the

115

Table A.2: Called classes during the execution of failing test case in project Lang (Bug ID
7b)

Class Name P C M Sum
org.apache.commons.lang3.math.NumberUtils 1.00 1.00 1.00 3.00
org.apache.commens-lang3.SystemUtils 0.83 0.33 0.00 1.17
org.apache.commons-lang3-StringUtils 0.83 0.33 0.00 1.17

class under test, since it has the highest matching score. Next, the algorithm removes the
remaining two Utility classes (last two rows in Table A.2). Since the set of called classes C'
is empty after the class under test and Utility classes are removed, the algorithm classifies
the test case as a unit test Finally, the algorithm categorises the fault 7b as exposed by unit
tests since there is only one failing test case, which is categorised as unit test.

116

[1]

2]

3]

4]

[5]

6]

[7]

Bibliography

Gang Tan. A collection of well-known software failures. August 2016. URL http:
//wwu.cse.psu.edu/~gxt29/bug/softwarebug.html. (Cited on page 1).

Gregory Tassey. The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology Report, May 2002. (Cited
on page 1).

Software fail watch: 5th edition. Tricentis Report, 2018. URL https://
www.tricentis.com/software-fail-watch/. (Cited on page 1).

David Janzen and Hossein Saiedian. Test-driven development: Concepts, taxon-
omy, and future direction. Computer, 38(9):43-50, September 2005. ISSN 0018-9162.
doi: 10.1109/MC.2005.314. URL http: //dx.doi.org/10.1109/MC.2005.314. (Cited
on page 1).

Bram Adams and Shane McIntosh. Modern release engineering in a nutshell —
why researchers should care. In Leaders of Tomorrow: Future of Software Engineering,
Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Osaka, Japan, March 2016. (Cited on pages 1 and 28).

Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. Automated debugging consid-
ered harmful considered harmful: A user study revisiting the usefulness of spectra-
based fault localization techniques with professionals using real bugs from large
systems. In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 267-278, October 2016. doi: 10.1109/ICSME.2016.67. (Cited on

page 1).

Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? -
more accurate information retrieval-based bug localization based on bug reports.
In Proceedings of the 34th International Conference on Software Engineering, ICSE "12,
pages 14-24, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3.

http://www.cse.psu.edu/~gxt29/bug/softwarebug.html
http://www.cse.psu.edu/~gxt29/bug/softwarebug.html
https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/
http://dx.doi.org/10.1109/MC.2005.314

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

118

URL http://dl.acm.org/citation.cfm?id=2337223.2337226. (Cited on pages 1
and 30).

R.K.Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug localization using
structured information retrieval. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 345-355. IEEE, November 2013. ISBN
978-1-4799-0215-6. doi: 10.1109/ASE.2013.6693093. (Cited on pages 1, 30, 56, 62,
63,79, 83, 84, and 85).

Shivani Rao, Henry Medeiros, and Avinash Kak. Comparing incremental latent se-
mantic analysis algorithms for efficient retrieval from software libraries for bug
localization. SIGSOFT Softw. Eng. Notes, 40(1):1-8, February 2015. ISSN 0163-
5948. doi: 10.1145/2693208.2693222. URL http://doi.acm.org/10.1145/
2693208.2693222. (Cited on pages 1 and 30).

Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. Information retrieval and
spectrum based bug localization: Better together. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 579-
590, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/
2786805.2786880. URL http://doi.acm.org/10.1145/2786805.2786880. (Cited
on pages 1, 30, 51, 52, and 79).

James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test infor-
mation to assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering, ICSE 02, pages 467-477, New York, NY, USA, 2002. ACM.
ISBN 1-58113-472-X. doi: 10.1145/581339.581397. URL http://doi.acm.org/
10.1145/581339.581397. (Cited on pages 1, 30, 31, 32, 35, 56, 57, 66, 74, 79, 80,
and 100).

James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ASE '05, pages 273-282, New York,
NY, USA, 2005. ACM. ISBN 1-58113-993-4. doi: 10.1145/1101908.1101949. URL
http://doi.acm.org/10.1145/1101908.1101949. (Cited on pages 1, 22, 29, 30, 31,
and 32).

Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and ArjanJ. C. van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and Software, 82
(11):1780-1792, November 2009. ISSN 0164-1212. doi: 10.1016/j.jss.2009.06.035.
URL http://dx.doi.org/10.1016/3.jss.2009.06.035. (Cited on pages 1, 10, 12, 22,
29,30, 31, 32, 39, and 56).

http://dl.acm.org/citation.cfm?id=2337223.2337226
http://doi.acm.org/10.1145/2693208.2693222
http://doi.acm.org/10.1145/2693208.2693222
http://doi.acm.org/10.1145/2786805.2786880
http://doi.acm.org/10.1145/581339.581397
http://doi.acm.org/10.1145/581339.581397
http://doi.acm.org/10.1145/1101908.1101949
http://dx.doi.org/10.1016/j.jss.2009.06.035

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineering, 42(8):707-740,
August 2016. ISSN 0098-5589. doi: 10.1109/TSE.2016.2521368. (Cited on pages 1
and 56).

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of sim-
ilarity coefficients for software fault localization. In Proceedings of the 12th Pa-
cific Rim International Symposium on Dependable Computing, PRDC '06, pages 3946,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2724-8. doi:
10.1109/PRDC.2006.18. URL https://doi.org/10.1109/PRDC.2006.18. (Cited on
pages 2 and 74).

Lucia, D. Lo, Lingxiao Jiang, and A. Budi. Comprehensive evaluation of associa-
tion measures for fault localization. In 2010 IEEE International Conference on Soft-
ware Maintenance, ICSM 2010, pages 1-10. IEEE, September 2010. doi: 10.1109/
ICSM.2010.5609542. (Cited on pages 2, 31, 32, 57, 58, 74, 79, and 100).

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-based
software diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11:1-11:32, August 2011.
ISSN 1049-331X. doi: 10.1145/2000791.2000795. URL http://doi.acm.org/
10.1145/2000791.2000795. (Cited on pages 2,29,56,58, 66,74, 80, and 100).

Shin Yoo. Evolving human competitive spectra-based fault localisation techniques.
In Proceedings of the 4th International Conference on Search Based Software Engineering,
SSBSE’12, pages 244-258, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-
642-33118-3. doi: 10.1007/978-3-642-33119-0_18. URL http://dx.doi.org/
10.1007/978-3-642-33119-0_18. (Cited on pages 2, 58, 66, 74, 80, and 101).

Cemal Yilmaz, Amit Paradkar, and Clay Williams. Time will tell: Fault localization
using time spectra. In Proceedings of the 30th International Conference on Software
Engineering, ICSE "08, pages 81-90, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-079-1. doi: 10.1145/1368088.1368100. URL http://doi.acm.org/10.1145/
1368088.1368100. (Cited on pages 2, 56, 58, 74, and 101).

Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
pages 177-188, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4390-9. doi:
10.1145/2931037.2931049. URL http://doi.acm.org/10.1145/2931037.2931049.
(Cited on pages 2, 56, 57, 58, 62, 63, 74, 78, 79, 80, 81, 83, 84, 93, 100, 101, and 102).

Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics to improve fault
localization. In Proceedings of the 26th ACM SIGSOFT International Symposium on

119

https://doi.org/10.1109/PRDC.2006.18
http://doi.acm.org/10.1145/2000791.2000795
http://doi.acm.org/10.1145/2000791.2000795
http://dx.doi.org/10.1007/978-3-642-33119-0_18
http://dx.doi.org/10.1007/978-3-642-33119-0_18
http://doi.acm.org/10.1145/1368088.1368100
http://doi.acm.org/10.1145/1368088.1368100
http://doi.acm.org/10.1145/2931037.2931049

BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

120

Software Testing and Analysis, ISSTA 2017, pages 273-283, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-5076-1. doi: 10.1145/3092703.3092717. URL http://
doi.acm.org/10.1145/3092703.3092717. (Cited on pages 2, 78, 79, 80, 101, and 102).

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight defect lo-
calization for java. In Proceedings of the 19th European Conference on Object-Oriented
Programming, ECOOP’05, pages 528-550, Berlin, Heidelberg, 2005. Springer-Verlag.
ISBN 3-540-27992-X, 978-3-540-27992-1. doi: 10.1007/11531142_23. URL http:
//dx.doi.org/10.1007/11531142_23. (Cited on pages 2, 10, 14, 15, 16, 17, 22, 24, 25,
31, 57,58, 60, 74,79, and 106).

Mohammed Javeed Zaki and Ching Jiu Hsiao. CHARM: an efficient algorithm for
closed itemset mining. In Proceedings of the Second SIAM International Conference
on Data Mining, Arlington, VA, USA, April 11-13, 2002, pages 457-473, 2002. URL
http://dx.doi.org/10.1137/1.9781611972726.27. (Cited on pages 3, 13, 17, 38, 87,
and 106).

Lionel Briand and Yvan Labiche. Empirical studies of software testing techniques:
Challenges, practical strategies, and future research. SIGSOFT Softw. Eng. Notes, 29
(5):1-3, September 2004. ISSN 0163-5948. doi: 10.1145/1022494.1022541. URL
http://doi.acm.org/10.1145/1022494.1022541. (Cited on page 4).

Hwa-You Hsu, J. A. Jones, and A. Orso. Rapid: Identifying bug signatures to sup-
port debugging activities. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ‘08, pages 439—-442. IEEE Com-
puter Society, 2008. ISBN 978-1-4244-2187-9. doi: 10.1109/ASE.2008.68. URL
http://dx.doi.org/10.1109/ASE.2008.68. (Cited on page 5).

Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, and Xifeng Yan. Identifying
bug signatures using discriminative graph mining. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ISSTA ‘09, pages 141-152.
ACM, 2009. ISBN 978-1-60558-338-9. doi: 10.1145/1572272.1572290. URL http:
//doi.acm.org/10.1145/1572272.1672290. (Cited on page 5).

D. Lo, H. Cheng, and X. Wang. Bug signature minimization and fusion. In 2011
IEEE 13th International Symposium on High-Assurance Systems Engineering, pages
340-347, Nov 2011. doi: 10.1109/HASE.2011.36. (Cited on page 5).

Chengnian Sun and Siau-Cheng Khoo. Mining succinct predicated bug signatures.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 576-586. ACM, 2013. ISBN 978-1-4503-2237-9. doi: 10.1145/
2491411.2491449. URL http://doi.acm.org/10.1145/2491411.2491449. (Cited
on page 5).

http://doi.acm.org/10.1145/3092703.3092717
http://doi.acm.org/10.1145/3092703.3092717
http://dx.doi.org/10.1007/11531142_23
http://dx.doi.org/10.1007/11531142_23
http://dx.doi.org/10.1137/1.9781611972726.27
http://doi.acm.org/10.1145/1022494.1022541
http://dx.doi.org/10.1109/ASE.2008.68
http://doi.acm.org/10.1145/1572272.1572290
http://doi.acm.org/10.1145/1572272.1572290
http://doi.acm.org/10.1145/2491411.2491449

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

BIBLIOGRAPHY

Zhiqiang Zuo, Siau-Cheng Khoo, and Chengnian Sun. Efficient predicated bug
signature mining via hierarchical instrumentation. In Proceedings of the 2014 In-
ternational Symposium on Software Testing and Analysis, ISSTA 2014, pages 215-224.
ACM, 2014. ISBN 978-1-4503-2645-2. doi: 10.1145/2610384.2610400. URL
http://doi.acm.org/10.1145/2610384.2610400. (Cited on page 5).

Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. Localising faults in test
execution traces. In Proceedings of the 14th International Workshop on Principles of
Software Evolution, INPSE 2015, pages 1-8, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3816-5. doi: 10.1145/2804360.2804361. URL http://doi.acm.org/
10.1145/2804360.2804361. (Cited on pages 7, 31, 56, 57, 58, 74, and 79).

Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. Fine-tuning spectrum
based fault localisation with frequent method item sets. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
pages 274-285, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3845-5. doi:
10.1145/2970276.2970308. URL http://doi.acm.org/10.1145/2970276.2970308.
(Cited on pages 7, 56, 57, 58, 78, 79, 80, 81, 100, 101, and 102).

Gulsher Laghari and Serge Demeyer. On the use of sequence mining within
spectrum based fault localisation. In Proceedings of the 33rd ACM/SIGAPP Sympo-
sium On Applied Computing, SAC 2018, 2018. ISBN 978-1-4503-5191-1/18/04. doi:
10.1145/3167132.3167337. URL https://doi.org/10.1145/3167132.3167337.
(Cited on page 7).

Gulsher Laghari and Serge Demeyer. Poster: Unit tests and component tests do
make a difference on fault localisation effectiveness. In Proceedings of the 40th Inter-
national Conference on Software Engineering Companion, ICSE-C "18, 2018. ISBN 978-
1-4503-5663-3/18/05. doi: 10.1145/3183440.3194970. URL https://doi.org/
10.1145/3183440.3194970. (Cited on page 7).

Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improv-
ing Software Quality and Reducing Risk. Addison-Wesley, 2007. (Cited on pages 9
and 28).

A. Miller. A hundred days of continuous integration. In Agile, 2008. AGILE '08.
Conference, pages 289-293, Aug 2008. doi: 10.1109/Agile.2008.8. (Cited on pages 10
and 28).

Daniel Stahl and Jan Bosch. Modeling continuous integration practice differences
in industry software development. Journal of Systems and Software, 87(0):48 — 59,
2014. (Cited on pages 10 and 28).

121

http://doi.acm.org/10.1145/2610384.2610400
http://doi.acm.org/10.1145/2804360.2804361
http://doi.acm.org/10.1145/2804360.2804361
http://doi.acm.org/10.1145/2970276.2970308
https://doi.org/10.1145/3167132.3167337
https://doi.org/10.1145/3183440.3194970
https://doi.org/10.1145/3183440.3194970

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

122

N. Tillmann and W. Schulte. Unit tests reloaded: Parameterized unit testing with
symbolic execution. IEEE Software, 23(4), 2006. (Cited on page 10).

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. Reassert: Sug-
gesting repairs for broken unit tests. In Proceedings of the Int’l Conference on Auto-
mated Software Engineering (ASE), pages 433—444. IEEE CS, 2009. (Cited on pages 10
and 28).

Andy Zaidman, Bart Van Rompaey, van Arie van Deursen, and Serge Demeyer.
Studying the co-evolution of production and test code in open source and indus-
trial developer test processes through repository mining. Empirical Software Engi-
neering, 16(3):325-364, 2011. (Cited on pages 10 and 28).

Per Runeson. A survey of unit testing practices. IEEE Software, 23(4):22-29, 2006.
(Cited on pages 10 and 28).

Michael Pradel and Thomas R. Gross. Automatic generation of object usage spec-
ifications from large method traces. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ‘09, pages 371-382, Wash-
ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3891-4. doi:
10.1109/ASE.2009.60. URL http://dx.doi.org/10.1109/ASE.2009.60. (Cited on
pages 10, 23, 24, and 75).

Martin Monperrus and Mira Mezini. Detecting missing method calls as violations
of the majority rule. ACM Trans. Softw. Eng. Methodol., 22(1):7:1-7:25, March 2013.
ISSN 1049-331X. doi: 10.1145/2430536.2430541. URL http://doi.acm.org/
10.1145/2430536.2430541. (Cited on page 10).

Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-
mann, 2005. (Cited on pages 10 and 55).

Bas Cornelissen, Andy Zaidman, Danny Holten, Leon Moonen, Arie van Deursen,
and Jarke J. van Wijk. Execution trace analysis through massive sequence and cir-
cular bundle views. Journal of Systems and Software, 81(12):2252 — 2268, 2008. doi:
http://dx.doi.org/10.1016/j.jss.2008.02.068. (Cited on page 13).

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. Pin-
point: Problem determination in large, dynamic internet services. In Proceedings of
the 2002 International Conference on Dependable Systems and Networks, DSN '02, pages
595-604, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1597-5.
URLhttp://dl.acm.org/citation.cfm?id=647883.738238. (Cited on pages 14, 22,
and 66).

http://dx.doi.org/10.1109/ASE.2009.60
http://doi.acm.org/10.1145/2430536.2430541
http://doi.acm.org/10.1145/2430536.2430541
http://dl.acm.org/citation.cfm?id=647883.738238

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

BIBLIOGRAPHY

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its potential im-
pact. Empirical Software Engineering, 10(4):405-435, 2005. ISSN 1382-3256. doi:
10.1007/510664-005-3861-2. URL http://dx.doi.org/10.1007/s10664-005-
3861-2. (Cited on pages 15, 25, 31, and 78).

Jingxuan Tu, Lin Chen, Yuming Zhou, Jianjun Zhao, and Baowen Xu. Leveraging
method call anomalies to improve the effectiveness of spectrum-based fault local-
ization techniques for object-oriented programs. In Quality Software (QSIC), 2012
12th International Conference on, pages 1-8, Aug 2012. doi: 10.1109/QSIC.2012.30.
(Cited on pages 22 and 24).

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic detection of
likely invariants. In Science of Computer Programming, 2006. (Cited on page 23).

Mark Gabel and Zhendong Su. Online inference and enforcement of temporal
properties. In Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE "10, pages 15-24, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-719-6. doi: 10.1145/1806799.1806806. URL http:
//doi.acm.org/10.1145/1806799.1806806. (Cited on page 23).

Robert KYin. Case study research: Design and methods. Sage publications, 2013. (Cited
on page 24).

Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improving re-
gression testing in continuous integration development environments. In Proceed-
ings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 235-245, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-3056-5. doi: 10.1145/2635868.2635910. URL http://doi.acm.org/10.1145/
2635868.2635910. (Cited on page 28).

Martin Fowler and Matthew Foemmel. Continuous integration (original version).
http:/ /http:/ /www.martinfowler.com/, September 2010. Accessed: April, 1st
2016. (Cited on page 28).

N. Tillmann and W. Schulte. Unit tests reloaded: parameterized unit testing with
symbolic execution. IEEE Software, 23(4):38—47, July 2006. ISSN 0740-7459. doi:
10.1109/MS.2006.117. (Cited on page 28).

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how, and why developers (do not) test in their IDEs. In Proceedings of the 10th Joint

123

http://dx.doi.org/10.1007/s10664-005-3861-2
http://dx.doi.org/10.1007/s10664-005-3861-2
http://doi.acm.org/10.1145/1806799.1806806
http://doi.acm.org/10.1145/1806799.1806806
http://doi.acm.org/10.1145/2635868.2635910
http://doi.acm.org/10.1145/2635868.2635910
http://www.martinfowler.com/articles/originalContinuousIntegration.html

BIBLIOGRAPHY

[55]

[56]

[57]

[58]

[59]

[60]

124

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE), pages 179-190. ACM,
2015. (Cited on page 28).

Shin Hwei Tan and Abhik Roychoudhury. Relifix: Automated repair of software
regressions. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1, ICSE "15, pages 471-482, Piscataway, NJ, USA, 2015. IEEE Press. ISBN
978-1-4799-1934-5. URL http://dl.acm.org/citation.cfm?id=2818754.2818813.
(Cited on pages 28 and 32).

Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting object
usage anomalies. In Proceedings of the the 6th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC-FSE '07, pages 35-44, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-811-4. doi: 10.1145/1287624.1287632. URL http:
//doi.acm.org/10.1145/1287624.1287632. (Cited on pages 28 and 58).

Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. The art
of testing less without sacrificing quality. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE 15, pages 483-493, Piscataway,
NJ, USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5. URL http://dl.acm.org/
citation.cfm?id=2818754.2818815. (Cited on page 28).

Foutse Khomh, Bram Adams, Tejinder Dhaliwal, and Ying Zou. Understanding the
impact of rapid releases on software quality: The case of firefox. Empirical Software
Engineering, 20(2):336-373, 2015. (Cited on page 28).

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA 2014, pages
437-440, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2645-2. doi: 10.1145/
2610384.2628055. URL http://doi.acm.org/10.1145/2610384.2628055. (Cited
on pages 28, 32, 41, 56, 61, 78, and 82).

Friedrich Steimann, Marcus Frenkel, and Rui Abreu. Threats to the validity and
value of empirical assessments of the accuracy of coverage- based fault locators.
In Proceedings of the 2013 International Symposium on Software Testing and Analysis,
ISSTA 2013, pages 314-324, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2159-4. doi: 10.1145/2483760.2483767. URL http://doi.acm.org/10.1145/
2483760.2483767. (Cited on pages 29, 30, 31, 39, 43, 56, 57, 62, 66, 74, 79, 80, 81,
83, 84, and 100).

http://dl.acm.org/citation.cfm?id=2818754.2818813
http://doi.acm.org/10.1145/1287624.1287632
http://doi.acm.org/10.1145/1287624.1287632
http://dl.acm.org/citation.cfm?id=2818754.2818815
http://dl.acm.org/citation.cfm?id=2818754.2818815
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2483760.2483767
http://doi.acm.org/10.1145/2483760.2483767

[61]

[62]

[63]

[64]

[65]

[66]

[67]

BIBLIOGRAPHY

F. Steimann and M. Frenkel. Improving coverage-based localization of multiple
faults using algorithms from integer linear programming. In Software Reliability
Engineering (ISSRE), 2012 IEEE 23rd International Symposium on, pages 121-130, Nov
2012. doi: 10.1109/ISSRE.2012.28. (Cited on pages 30, 31, 39, 43, 51, and 56).

Nicholas DiGiuseppe and James A. Jones. On the influence of multiple faults on
coverage-based fault localization. In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA "11, pages 210-220, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0562-4. doi: 10.1145/2001420.2001446. URL http://
doi.acm.org/10.1145/2001420.2001446. (Cited on pages 30 and 52).

Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken. Statis-
tical debugging: Simultaneous identification of multiple bugs. In Proceedings of the
23rd International Conference on Machine Learning (ICML "06), pages 1105-1112, New
York, NY, USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/1143844.1143983.
URL http://doi.acm.org/10.1145/1143844.1143983. (Cited on page 30).

José Campos, André Riboira, Alexandre Perez, and Rui Abreu. Gzoltar: An eclipse
plug-in for testing and debugging. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, pages 378-381, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1204-2. doi: 10.1145/2351676.2351752.
URL http://doi.acm.org/10.1145/2351676.2351752. (Cited on pages 31, 32, 57,
79, and 80).

Jingxuan Tu, Lin Chen, Yuming Zhou, Jianjun Zhao, and Baowen Xu. Leveraging
method call anomalies to improve the effectiveness of spectrum-based fault local-
ization techniques for object-oriented programs. In Proceedings of the 2012 12th Inter-
national Conference on Quality Software, QSIC "12, pages 1-8, Washington, DC, USA,
2012. IEEE Computer Society. ISBN 978-0-7695-4833-3. doi: 10.1109/QSIC.2012.30.
URL http://dx.doi.org/10.1109/QSIC.2012.30. (Cited on pages 31, 57, and 79).

Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. Slice-
based statistical fault localization. J. Syst. Softw., 89:51-62, March 2014. ISSN
0164-1212. doi: 10.1016/j.jss.2013.08.031. URL http://dx.doi.org/10.1016/
j.jss.2013.08.031. (Cited on pages 31 and 32).

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION, TAICPART-
MUTATION 07, pages 89-98, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2984-4. URL http://dl.acm.org/citation.cfm?7id=1308173.1308264.
(Cited on pages 31, 32, 56, 57, 58, 66, 74, 79, 80, and 100).

125

http://doi.acm.org/10.1145/2001420.2001446
http://doi.acm.org/10.1145/2001420.2001446
http://doi.acm.org/10.1145/1143844.1143983
http://doi.acm.org/10.1145/2351676.2351752
http://dx.doi.org/10.1109/QSIC.2012.30
http://dx.doi.org/10.1016/j.jss.2013.08.031
http://dx.doi.org/10.1016/j.jss.2013.08.031
http://dl.acm.org/citation.cfm?id=1308173.1308264

BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

[73]

[74]

126

Lucia, David Lo, and Xin Xia. Fusion fault localizers. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering, ASE '14,
pages 127-138, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3013-8. doi:
10.1145/2642937.2642983. URL http://doi.acm.org/10.1145/2642937.2642983.
(Cited on pages 31, 32, 35, 57, and 79).

Tien-Duy B. Le, David Lo, and Ferdian Thung. Should i follow this fault localiza-
tion tool’s output? Empirical Softw. Engg., 20(5):1237-1274, October 2015. ISSN
1382-3256. doi: 10.1007/s10664-014-9349-1. URL http://dx.doi.org/10.1007/
510664-014-9349-1. (Cited on pages 31, 32, 57, and 79).

J. Xuan and M. Monperrus. Learning to combine multiple ranking metrics for
fault localization. In 2014 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2014, pages 191-200. IEEE, September 2014. doi: 10.1109/
ICSME.2014.41. (Cited on pages 31, 43, 57, 62, 74,79, 84, and 101).

Chris Parnin and Alessandro Orso. Are automated debugging techniques actu-
ally helping programmers? In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA "11, pages 199-209, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0562-4. doi: 10.1145/2001420.2001445. URL
http://doi.acm.org/10.1145/2001420.2001445. (Cited on pages 31, 51, 56, 62,
63,75, 83, 85, and 99).

Pragya Agarwal and Arun Prakash Agrawal. Fault-localization techniques for soft-
ware systems: A literature review. SIGSOFT Softw. Eng. Notes, 39(5):1-8, September
2014. ISSN 0163-5948. doi: 10.1145/2659118.2659125. URL http://doi.acm.org/
10.1145/2659118.2659125. (Cited on pages 31 and 78).

Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments
of the effectiveness of dataflow- and controlflow-based test adequacy criteria. In
Proceedings of the 16th International Conference on Software Engineering, ICSE 94,
pages 191-200, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press. ISBN
0-8186-5855-X. URL http://dl.acm.org/citation.cfm?id=257734.257766. (Cited
on page 31).

Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization
benchmarks from history. In Proceedings of the Twenty-second IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE '07, pages 433-436,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4. doi: 10.1145/
1321631.1321702. URL http://doi.acm.org/10.1145/1321631.1321702. (Cited
on pages 31 and 78).

http://doi.acm.org/10.1145/2642937.2642983
http://dx.doi.org/10.1007/s10664-014-9349-1
http://dx.doi.org/10.1007/s10664-014-9349-1
http://doi.acm.org/10.1145/2001420.2001445
http://doi.acm.org/10.1145/2659118.2659125
http://doi.acm.org/10.1145/2659118.2659125
http://dl.acm.org/citation.cfm?id=257734.257766
http://doi.acm.org/10.1145/1321631.1321702

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

BIBLIOGRAPHY

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In Proceedings of the 34th International Conference on Software Engineering, ICSE
12, pages 3-13, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3.
URL http://dl.acm.org/citation.cfm?id=2337223.2337225. (Cited on page 32).

J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote, T. Durieux, D. Le
Berre, and M. Monperrus. Nopol: Automatic repair of conditional statement bugs
in java programs. IEEE Transactions on Software Engineering, 43(1):34-55, January
2017. ISSN 0098-5589. doi: 10.1109/TSE.2016.2560811. (Cited on pages 32 and 85).

Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using automated pro-
gram repair for evaluating the effectiveness of fault localization techniques. In Pro-
ceedings of the 2013 International Symposium on Software Testing and Analysis, ISSTA
2013, pages 191-201, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2159-4. doi:
10.1145/2483760.2483785. URL http://doi.acm.org/10.1145/2483760.2483785.
(Cited on page 32).

Robert V. Binder. Testing Object-oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-
201-80938-9. (Cited on pages 35, 57, 77, and 79).

David Lo, Siau-Cheng Khoo, and Chao Liu. Efficient mining of iterative patterns
for software specification discovery. In Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ‘07, pages 460—
469, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-609-7. doi: 10.1145/
1281192.1281243. URL http://doi.acm.org/10.1145/1281192.1281243. (Cited
on page 51).

Per Runeson and Martin Host. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engineering, 14(2):131-164, 2009.
(Cited on pages 51, 75, and 99).

Robert K. Yin. Case Study Research: Design and Methods, 3 edition. Sage Publications,
2002. (Cited on pages 51, 75, and 99).

R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug localization
using structured information retrieval. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, pages 345-355, Nov 2013. doi:
10.1109/ASE.2013.6693093. (Cited on pages 51 and 52).

Xiaozhen Xue and Akbar Siami Namin. How significant is the effect of fault in-

teractions on coverage-based fault localizations? In 2013 ACM /IEEE International

127

http://dl.acm.org/citation.cfm?id=2337223.2337225
http://doi.acm.org/10.1145/2483760.2483785
http://doi.acm.org/10.1145/1281192.1281243

BIBLIOGRAPHY

[84]

[85]

[86]

[87]

[88]

[89]

[90]

128

Symposium on Empirical Software Engineering and Measurement, pages 113122, Octo-
ber 2013. (Cited on page 52).

Laurent Christophe, Reinout Stevens, Coen De Roover, and Wolfgang De Meuter.
Prevalence and maintenance of automated functional tests for web applications.
In Proceedings of the 2014 IEEE International Conference on Software Maintenance and
Evolution, ICSME "14, pages 141-150, Washington, DC, USA, 2014. IEEE Computer
Society. ISBN 978-1-4799-6146-7. doi: 10.1109/ICSME.2014.36. URL http://
dx.doi.org/10.1109/ICSME.2014.36. (Cited on page 52).

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving fault localiza-
tion. In Proceedings of the 39th International Conference on Software Engineering, ICSE
"17, pages 609-620, Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-3868-2.
doi: 10.1109/ICSE.2017.62. URL https://doi.org/10.1109/ICSE.2017.62. (Cited
on pages 57, 62, 74,78,79, 80, 81, 84, 86, and 100).

Jonathan Aldrich Joshua Sushine, James D. Herbsleb. Searching the state space: A
qualitative study of api protocol usability. In Proceedings of the International Confer-
ence on Program Comprehension (ICPC), 2015. (Cited on page 58).

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practitioners” expec-
tations on automated fault localization. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, ISSTA 2016, pages 165-176, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4390-9. doi: 10.1145/2931037.2931051. URL
http://doi.acm.org/10.1145/2931037.2931051. (Cited on pages 58, 79, and 99).

Boris Cule, Nikolaj Tatti, and Bart Goethals. Marbles: Mining association rules
buried in long event sequences. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 7(2):93-110, 2014. (Cited on pages 60, 73, and 76).

Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. Automated api property inference techniques. IEEE Trans. Softw. Eng.,
39(5):613-637, May 2013. ISSN 0098-5589. doi: 10.1109/TSE.2012.63. URL
http://dx.doi.org/10.1109/TSE.2012.63. (Cited on page 60).

Andreas Zeller, Thomas Zimmermann, and Christian Bird. Failure is a four-
letter word: A parody in empirical research. In Proceedings of the 7th Interna-
tional Conference on Predictive Models in Software Engineering, Promise "11, pages
5:1-5:7, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0709-3. doi: 10.1145/
2020390.2020395. URL http://doi.acm.org/10.1145/2020390.2020395. (Cited
on pages 64 and 69).

http://dx.doi.org/10.1109/ICSME.2014.36
http://dx.doi.org/10.1109/ICSME.2014.36
https://doi.org/10.1109/ICSE.2017.62
http://doi.acm.org/10.1145/2931037.2931051
http://dx.doi.org/10.1109/TSE.2012.63
http://doi.acm.org/10.1145/2020390.2020395

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

BIBLIOGRAPHY

Alberto Gonzalez Sanchez. Automatic error detection techniques based on
dynamic invariants. =~ Master’s thesis, Delft University of Technology, the
Netherlands, 2007. URL http :// swerl.tudelft.nl /twiki / pub /Main /
AlbertoGonzalezSanchez/thesis_gonzalez.pdf. (Cited on page 66).

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based multiple
fault localization. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE '09, pages 88-99, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-0-7695-3891-4. doi: 10.1109/ASE.2009.25. URL
http://dx.doi.org/10.1109/ASE.2009.25. (Cited on pages 66 and 80).

W. Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. Effective fault localization us-
ing code coverage. In Proceedings of the 31st Annual International Computer Software
and Applications Conference - Volume 01, COMPSAC 07, pages 449-456, Washing-
ton, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2870-8. doi: 10.1109/
COMPSAC.2007.109. URL http://dx.doi.org/10.1109/COMPSAC.2007.109. (Cited
on page 66).

Mark Gabel and Zhendong Su. Online inference and enforcement of temporal
properties. In Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE ’10, pages 1524, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-719-6. doi: 10.1145/1806799.1806806. URL http:
//doi.acm.org/10.1145/1806799.1806806. (Cited on page 74).

Choonghwan Lee, Feng Chen, and Grigore Rosu. Mining parametric specifications.
In Proceedings of the 33rd International Conference on Software Engineering, ICSE "11,
pages 591-600, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0445-0. doi:
10.1145/1985793.1985874. URL http://doi.acm.org/10.1145/1985793.1985874.
(Cited on page 75).

Lisa Crispin and Janet Gregory. Agile Testing: A Practical Guide for Testers and Agile
Teams. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2009.
(Cited on pages 77 and 82).

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707-740, August 2016.
ISSN 0098-5589. doi: 10.1109/TSE.2016.2521368. (Cited on page 78).

Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. = Boosting
spectrum-based fault localization using pagerank. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2017,
pages 261-272, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5076-1. doi:

129

http://swerl.tudelft.nl/twiki/pub/Main/AlbertoGonzalezSanchez/thesis_gonzalez.pdf
http://swerl.tudelft.nl/twiki/pub/Main/AlbertoGonzalezSanchez/thesis_gonzalez.pdf
http://dx.doi.org/10.1109/ASE.2009.25
http://dx.doi.org/10.1109/COMPSAC.2007.109
http://doi.acm.org/10.1145/1806799.1806806
http://doi.acm.org/10.1145/1806799.1806806
http://doi.acm.org/10.1145/1985793.1985874

BIBLIOGRAPHY

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

130

10.1145/3092703.3092731. URL http://doi.acm.org/10.1145/3092703.3092731.
(Cited on pages 79, 80, and 102).

W. E. Wong, V. Debroy, R. Gao, and Y. Li. The dstar method for effective software
fault localization. IEEE Transactions on Reliability, 63(1):290-308, March 2014. ISSN
0018-9529. doi: 10.1109/TR.2013.2285319. (Cited on page 80).

Joep Weijers. Extending project lombok to improve junit tests. Master’s the-
sis, Delft University of Technology, the Netherlands, 2012. URL http://
repository.tudelft.nl/islandora/object/uuid: 1736d513-e69f-4101-8995-
4597c2a4df50/datastream/0BJ/download. (Cited on page 82).

Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave Bink-
ley. Recovering test-to-code traceability using slicing and textual analysis. J. Syst.
Softw., 88:147-168, February 2014. ISSN 0164-1212. doi: 10.1016/j.jss.2013.10.019.
URL http://dx.doi.org/10.1016/j.jss.2013.10.019. (Cited on pages 82 and 115).

Norman Cliff. Answering ordinal questions with ordinal data using ordinal
statistics. Multivariate Behavioral Research, 31(3):331-350, 1996. doi: 10.1207/
$15327906mbr3103_4. PMID: 26741071. (Cited on page 87).

Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton,
Stuart Charters, Shirley Gibbs, and Amnart Pohthong. Robust statistical methods
for empirical software engineering. Empirical Software Engineering, 22(2):579-630,
2017. ISSN 1573-7616. doi: 10.1007/510664-016-9437-5. URL http://dx.doi.org/
10.1007/s10664-016-9437-5. (Cited on page 87).

Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace syn-
ergism. The American Statistician, 52(2):181-184, 1998. ISSN 00031305. URL
http://wuw.jstor.org/stable/2685478. (Cited on page 87).

Yanbing Yu, James A. Jones, and Mary Jean Harrold. An empirical study of the
effects of test-suite reduction on fault localization. In Proceedings of the 30th Inter-
national Conference on Software Engineering, ICSE ’08, pages 201-210, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-079-1. doi: 10.1145/1368088.1368116. URL
http://doi.acm.org/10.1145/1368088.1368116. (Cited on pages 99 and 101).

Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-
Wei Wu, and Vincent S. Tseng. Spmf: A java open-source pattern mining library.
J. Mach. Learn. Res., 15(1):3389-3393, January 2014. ISSN 1532-4435. URL http:
//dl.acm.org/citation.cfm?id=2627435.2750353. (Cited on page 100).

Alexandre Perez, Rui Abreu, and Arie van Deursen. A test-suite diagnosability
metric for spectrum-based fault localization approaches. In ICSE 2017, Proceedings

http://doi.acm.org/10.1145/3092703.3092731
http://repository.tudelft.nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/OBJ/download
http://repository.tudelft.nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/OBJ/download
http://repository.tudelft.nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/OBJ/download
http://dx.doi.org/10.1016/j.jss.2013.10.019
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://www.jstor.org/stable/2685478
http://doi.acm.org/10.1145/1368088.1368116
http://dl.acm.org/citation.cfm?id=2627435.2750353
http://dl.acm.org/citation.cfm?id=2627435.2750353

[108]

[109]

[110]

[111]

[112]

[113]

BIBLIOGRAPHY

of the 39th International Conference on Software Engineering, Buenos Aires, Argentina,
May 2017. (Cited on page 101).

Martin Monperrus. Automatic software repair: A bibliography. ACM Computing
Surveys, 51(1):17:1-17:24, January 2018. ISSN 0360-0300. doi: 10.1145/3105906.
URL http://doi.acm.org/10.1145/3105906. (Cited on page 101).

Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest fixes
for faulty programs. In Proceedings of the 2010 Third International Conference on Soft-
ware Testing, Verification and Validation, ICST 10, pages 65-74, Washington, DC, USA,
2010. IEEE Computer Society. ISBN 978-0-7695-3990-4. doi: 10.1109/ICST.2010.66.
URL http://dx.doi.org/10.1109/ICST.2010.66. (Cited on page 101).

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In Proceedings of the 2013 Inter-
national Conference on Software Engineering, ICSE "13, pages 802-811, Piscataway,
NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL http://dl.acm.org/
citation.cfm?id=2486788.2486893. (Cited on pages 101 and 102).

Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Mar-
tin Monperrus. Automatic repair of real bugs in java: A large-scale experiment
on the defects4j dataset. Empirical Software Engineering, 22(4):1936-1964, August
2017. ISSN 1382-3256. doi: 10.1007/510664-016-9470-4. URL https://doi.org/
10.1007/510664-016-9470-4. (Cited on pages 101 and 102).

Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Monperrus Martin, and
Marcelo Almeida Maia. Dissection of a bug dataset: Anatomy of 395 patches
from defectsd4j. In IEEE 25th International Conference on Software Analysis, Evolu-
tion and Reengineering, SANER 2018, page to appear, March 2018. URL http:
//saner.unimol.it/accepted. (Cited on pages 102 and 109).

Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the di-
chotomy of debugging behavior among programmers. In Infernational Conference
on Software Engineering, ICSE 2018, May-June 2018. doi: 10.1109/ICSME.2016.67.
(Cited on pages 108 and 109).

131

http://doi.acm.org/10.1145/3105906
http://dx.doi.org/10.1109/ICST.2010.66
http://dl.acm.org/citation.cfm?id=2486788.2486893
http://dl.acm.org/citation.cfm?id=2486788.2486893
https://doi.org/10.1007/s10664-016-9470-4
https://doi.org/10.1007/s10664-016-9470-4
http://saner.unimol.it/accepted
http://saner.unimol.it/accepted

	Acknowledgments
	Publications
	1 Introduction
	1.1 Spectrum Based Fault Localisation
	1.2 Problem Statement
	1.3 Data mining and Fault Localisation
	1.4 Contributions
	1.5 Thesis Outline
	1.6 Origin of Chapters

	2 Localising Faults in Test Execution Traces
	2.1 Introduction
	2.2 Heuristics Under Investigation
	2.2.1 Spectrum Based Fault Localisation
	2.2.2 Collecting Traces
	2.2.3 From Traces to Class Sequences
	2.2.4 Ranking Classes

	2.3 Experimental setup
	2.3.1 Replication Case — NanoXML
	2.3.2 Replication Details

	2.4 Results and discussion
	2.4.1 Anecdotal Evidence
	2.4.2 Discussion

	2.5 Related work
	2.5.1 Spectrum Based Fault Localisation
	2.5.2 Program Comprehension

	2.6 Threats to Validity
	2.7 Conclusion
	2.8 Acknowledgments

	3 Fine-tuning Spectrum Based Fault Localisation with Frequent Method Item Sets
	3.1 Introduction
	3.2 State of the Art
	3.3 Motivating Scenario
	3.3.1 Requirements

	3.4 Patterned Spectrum Analysis
	3.4.1 Collecting the Trace
	3.4.2 Slicing the Trace
	3.4.3 Obtaining Call Patterns
	3.4.4 Calculating the Hit-Spectrum
	3.4.5 Ranking Methods

	3.5 Case Study Setup
	3.6 Results and Discussion
	3.7 Possible Improvements
	3.8 Threats to Validity
	3.9 Conclusion
	3.10 Acknowledgments

	4 On the Use of Sequence Mining within Spectrum Based Fault Localisation
	4.1 Introduction
	4.2 Background
	4.3 Sequenced Spectrum Analysis
	4.3.1 Collecting the Trace
	4.3.2 Obtaining Call Sequences
	4.3.3 Calculating the Hit-Spectrum
	4.3.4 Ranking Methods

	4.4 Evaluation
	4.4.1 Dataset
	4.4.2 Evaluation Metrics
	4.4.3 Experimental Protocol

	4.5 Results
	4.6 Related Work
	4.7 Threats to Validity
	4.8 Conclusion
	4.9 Acknowledgments

	5 Spectrum Based Fault Localisation: What about Component Tests ?
	5.1 Introduction
	5.2 Fault Localisation Techniques
	5.3 Case Study Setup
	5.3.1 Refining Defects4J
	5.3.2 Evaluation Metrics
	5.3.3 Research Questions
	5.3.4 Evaluation Protocol

	5.4 Results and Discussion
	5.5 Threats to Validity
	5.6 Related Work
	5.7 Conclusion
	5.8 Acknowledgments.

	6 Conclusions
	6.1 Summary of Contributions
	6.2 Summary of Research Questions
	6.3 Outlook

	Appendices
	A Defects4J Refinements
	A.1 Algorithm to categorise the faults
	A.2 Illustrative Examples

	Bibliography

